K_{b}

K_{b} - dissociation constant for weak bases

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}<===>\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

The $\square \mathrm{K}_{\mathrm{b}}$, the stronger the base.
The $\square \mathrm{K}_{\mathrm{b}}$, the weaker the base.

Similar to K_{a} values, pK_{b} values can be calculated.

The larger the pK_{b} value, the weaker the base and the smaller the pK_{b}, the stronger the base.

How are K_{a} and K_{b} related?

RECALL: Equilibrium Law

When chemical equilibria are added together, the equilibrium constants are multiplied together.
$\mathrm{K}_{\text {eq final } \mathrm{xx}}=\mathrm{K}_{\text {eq } \mathrm{rxn} 1} \times \mathrm{K}_{\text {eq } \mathrm{rxn} 2}$

K_{b} Calculations

Two types of calculations may also be completed:

1) Calculate the values of K_{b} and $p K_{b}$ from the pH of a solution of a weak base of known initial concentration.
2) Calculate the pH of a solution where pK_{b} and initial concentration are known.

Example 1

Methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, is one of several substances that give herring brine its pungent odor. In $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}$, the pH is
11.80. What is the K_{b} of methylamine?
$\therefore \mathrm{K}_{\mathrm{b}}$ is 4.24×10^{-4}

Example 2

$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$ Morphine is an alkaloid (an alkaline compound obtained from plants), which is a weak base. The pH of 0.010 M morphine is 10.10. Calculate K_{b} and pK_{b} morphine.

Example 2

$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$ Morphine is an alkaloid (an alkaline compound obtained from plants), which is a weak base. The pH of 0.010 M morphine is 10.10. Calculate K_{b} and pK_{b} morphine.

$$
\therefore \mathrm{pK}_{\mathrm{b}}=5.8, \mathrm{k}_{\mathrm{b}}=1.6 \times 10^{-6}
$$

Example 3

Calculate the values of $\mathrm{pH}, \mathrm{pOH}$ and $[\mathrm{OH}]$] of a 0.20 M solution of ammonia. K_{b} of ammonia is 1.8×10^{-5}
$\therefore \mathrm{pH}=11.3, \mathrm{pOH}=2.7,\left[\mathrm{OH}^{-}\right]=1.9 \times 10^{-3} \mathrm{M}$

The characteristic taste of tonic water is due to the addition of quinine. Quinine is a naturally occurring compound that is also used to treat malaria. The base dissociation constant, K_{b}, for quinine is 3.3×10^{-6}. Calculate $\left[\mathrm{OH}^{-}\right]$and the pH of a $1.7 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$ solution of quinine.

