

K_b – dissociation constant for weak bases

K_h

$NH_3 + H_2O <==> NH_4^+ + OH^-$

The K_b , the stronger the base. The K_b , the weaker the base.

Similar to K_a values, pK_b values can be calculated.

The larger the pK_b value, the weaker the base and the smaller the pK_b , the stronger the base.

How are K_a and K_b related?

RECALL: Equilibrium Law

When chemical equilibria are added together, the equilibrium constants are multiplied together.

$$K_{eq final rxn} = K_{eq rxn 1} \times K_{eq rxn 2}$$

K_b Calculations Two types of calculations may also be completed:

 Calculate the values of K_b and pK_b from the pH of a solution of a weak base of known initial concentration.

 Calculate the pH of a solution where pK_b and initial concentration are known.

Example 1

Methylamine, CH_3NH_2 , is one of several substances that give herring brine its pungent odor. In 0.100 M CH_3NH_2 , the pH is 11.80. What is the K_b of methylamine?

Example 2

C₁₇H₁₉NO₃ Morphine is an alkaloid (an alkaline compound obtained from plants), which is a weak base. The pH of 0.010 M morphine is 10.10. Calculate K_b and pK_b morphine.

Example 2

C₁₇H₁₉NO₃ Morphine is an alkaloid (an alkaline compound obtained from plants), which is a weak base. The pH of 0.010 M morphine is 10.10. Calculate K_b and pK_b morphine.

:
$$pK_b = 5.8, k_b = 1.6 \times 10^{-6}$$

Example 3

Calculate the values of pH, pOH and [OH⁻] of a 0.20 M solution of ammonia. K_b of ammonia is 1.8x10⁻⁵

.: pH = 11.3, pOH = 2.7, $[OH^{-}] = 1.9 \times 10^{-3} M$

Thursday, April 3, 2014

The characteristic taste of tonic water is due to the addition of quinine. Quinine is a naturally occurring compound that is also used to treat malaria. The base dissociation constant, K_b , for quinine is 3.3×10^{-6} . Calculate [OH⁻] and the pH of a 1.7×10^{-3} mol/L solution of quinine.