Weak acids, K_{a}

SCH4U

Chemical Equilibrium

- Last class, we said STRONG acids dissociate 100\% into ions

Working with Strong acids

\author{

- Find the pH of a solution of 0.16 M HBr .
}

- Weak acids

- Weak acids do NOT dissociate 100\% into ions and are in equilibrium

Acid-Dissociation Constant,

$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq)}}<===>\mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}{ }_{(\mathrm{aq})}$ What is the formula for K_{a} ?

Ionization Constant (K_{a})

How do you suppose the K_{a} values of strong acids compare with weak acids?

1. Strong
2. Weak

pK_{a}

How are K_{a} and pK_{a} related?

$$
\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}
$$

small $\mathrm{pK}_{\mathrm{a}}=$ more ionization; stronger acid
large $\mathrm{pK}_{\mathrm{a}}=$ less ionization; weaker acid

-• Example \#1

a) Calculate pK_{a} for acetic acid given $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$
b) Calculate K_{a} for ammonium ion given $\mathrm{pKa}=9.24$.

Example \#2

Hypoioidous acid has a pK_{a} of 10.6. The pK_{a} of hypobromous acid is 8.64. What is the chemical formula for each substance? Which is the weaker acid?

Calculations using pH

Two types of calculations:

1. Calculate K_{a} and pK_{a} from the pH of its solution given initial concentration.
2. Calculate pH or $\left[\mathrm{H}^{+}\right]$of a solution given the initial concentration and K_{a} or pK_{a}.

- - Percent Dissociation

- Weak acids only partially dissociate
- Percent dissociation is used to express how much the weak acid ionizes
- It is the percent of the acid that actually turned into ions

Percent dissociation $=\frac{[\mathrm{HA}] \text { dissociated }}{[\mathrm{HA}] \text { initial }} \times 100 \%$

Example \#3

- Propanoic acid is a weak acid used to inhibit mould formation in bread. A student makes a 0.10 M solution and it is found to have a pH of 2.96. What is the Ka and percent dissociation of this weak acid?

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

- Example \#4

A 0.100 M solution of the weak acid HF was found to have an $\left[\mathrm{H}_{3} \mathrm{O}+\right]=0.008 \mathrm{M}$ at equilibrium. Calculate the K_{a} and pK_{a} for HF .

- Determining pH using Ka

- A chemist prepares a 0.050 M solution of nitrous acid, HNO_{2}. Find the $\mathrm{pH}\left(\mathrm{Ka}\right.$ is $\left.5.6 \times 10^{-4}\right)$

19. Calculate the pH of a sample of vinegar that contains $0.83 \mathrm{~mol} / \mathrm{L}$ acetic acid. What is the percent dissociation of the vinegar?

$$
\text { Percent dissociation }=\frac{[H A] \text { dissociated }}{[H A] \text { initial }} \times 100 \%
$$

- Try it!

- Weak acid problems
- p. 26 in workbook

