

SCH4U Chemical Equilibrium

1

Last class, we said STRONG acids dissociate 100% into ions

Working with Strong acids

• Find the pH of a solution of 0.16M HBr.

• • • Weak acids

Weak acids do NOT dissociate 100% into ions and are in equilibrium

Acid-Dissociation Constant, K_a

• $HA + H_2O \leftrightarrow A^- + H_3O^+$

$HC_{2}H_{3}O_{2(aq)} <==> H^{+}_{(aq)} + C_{2}H_{3}O_{2}^{-}_{(aq)}$ What is the formula for K_a?

Ionization Constant (K_a)

How do you suppose the K_a values of strong acids compare with weak acids?

1. Strong

How are K_a and pK_a related?

$$pK_a = -\log K_a$$

small pK_a = more ionization; stronger acid

large $pK_a = less$ ionization; weaker acid

a) Calculate pK_a for acetic acid given $K_a = 1.8 \times 10^{-5}$

b) Calculate K_a for ammonium ion given pKa = 9.24.

Wednesday, April 2, 2014

• • • Example #2

Hypoioidous acid has a pK_a of 10.6. The pK_a of hypobromous acid is 8.64. What is the chemical formula for each substance? Which is the weaker acid?

••• Calculations using pH Two types of calculations:

- 1. Calculate K_a and pK_a from the pH of its solution given initial concentration.
- 2. Calculate pH or [H⁺] of a solution given the initial concentration and K_a or pK_a.

Percent Dissociation

- Weak acids only partially dissociate
- Percent dissociation is used to express how much the weak acid ionizes
- It is the percent of the acid that actually turned into ions

Percent dissociation = [HA] dissociated x 100% [HA] initial

• • Example #3

 Propanoic acid is a weak acid used to inhibit mould formation in bread. A student makes a 0.10 M solution and it is found to have a pH of 2.96. What is the Ka and percent dissociation of this weak acid?

• $HA + H_2O \leftrightarrow A^- + H_3O^+$

A 0.100 M solution of the weak acid HF was found to have an $[H_3O+] = 0.008$ M at equilibrium. Calculate the K_a and pK_a for HF.

Determining pH using Ka

• A chemist prepares a 0.050 M solution of nitrous acid, HNO_2 . Find the pH (Ka is 5.6 x 10^{-4})

0

19. Calculate the pH of a sample of vinegar that contains 0.83 mol/L acetic acid. What is the percent dissociation of the vinegar?

Percent dissociation = [HA] dissociated x 100% [HA] initial

Weak acid problemsp. 26 in workbook