Structure \& Properties

Predicting Molecular shape \& VSEPR theory!

Valence Shell Electron Pair Repulsion

When trying to determine the shape of a molecule, we must consider two things:

* The electrons in bonds (bond pairs)
* The electrons not in bonds (lone pairs)

* REMEMBER! Electrons are negatively charged and will repel each other.

VSEPR

- Valence Shell Electron Pair Repulsion (VSEPR) theory can be used to predict the geometric shapes of molecules.
- VSEPR revolves around the principle that electrons repel each other.
- One can predict the shape of a molecule by finding a pattern where electron pairs are as far from each other as possible.

VSEPR

* Molecules will be shaped in a way in order to minimize contact between electrons
* Lone pair (those not in a bond) electrons cause the most repelling since they take up so much space
* In order of severity of repelling:
* Lone Pair -Lone Pair
* Lone Pair -Bond Pair
* Bond Pair- Bond Pair

Both bonding and non-bonding electron pairs repell

Exceptions

* Violations of the octet rule usually occur with B and elements of higher periods.
* Some common examples include: $\mathrm{Be}, \mathrm{B}, \mathrm{P}, \mathrm{S}$, and Xe.
* Be: 4

B: 6
P: 8 OR 10
S: 8,10, OR 12
Xe: 8,10, OR 12

5 Basic Shapes

ure 4.11 The five basic electron-group arrangements and their bond angles

Notation

* Start by drawing the Lewis Structure. Then assign A, X, E
* A represents the central atom
* X represents the number of bonds to the central atom
* E represents the number of lone pair electrons on the central atom
* ie) $\mathrm{AX}_{4}, \mathrm{AX}_{2} \mathrm{E}_{2}, \mathrm{AX}_{2}$

Linear

$$
\text { ie) } \mathrm{CO}_{2}
$$

2 attachments, no lone pairs (AX_{2})
180 degrees between atoms

$\mathrm{O}=\mathrm{C}=\mathrm{o}$

Trigonal Planar

$*_{i=1)}$
3 attachments, no lone pairs (AX_{3})

* Bonds are flat, 120 degrees apart

Tetrahedral

ie) CH_{4}

* 4 attachments, no lone pairs $\left(\mathrm{AX}_{4}\right)$
* 109.5 degrees

Tetrahedral

Tetrahedral: Trigonal Pyramidal

\neq ie) NH_{3}

* 4 attachments total, 1 of which is a lone pair
* $\mathrm{AX}_{3} \mathrm{E}_{1}$

Tetrahedral: Bent

\neq ie) $\mathrm{H}_{2} \mathrm{O}$

* 4 attachments total, 2 of which are lone pairs
* $\mathrm{AX}_{2} \mathrm{E}_{2}$

Another Linear!

ie) HF

4 attachments, 3 of which are lone pairs

* AXE_{4}

Trigonal Bipyramidal

5 attachments, no lone pairs * AX_{5}

* 120 degrees, at 90 degrees to each other

Trigonal Bipyramidal: SeeSaw

* 5 attachments, 1 of which is a lone pair
* $\mathrm{AX}_{4} \mathrm{E}_{1}$

Trigonal Bipyramidal: T-Shaped

 ie) BrF_{3}5 attachments, 2 of which are lone pairs

* $\mathrm{AX}_{3} \mathrm{E}_{2}$
* T-shaped

One more Linear!

ie) XeF_{2}
5 attachments, 3 of which are lone pairs!

* $\mathrm{AX}_{2} \mathrm{E}_{3}$
* 180 degrees to each other, with the lone pairs above/below plane

Octahedral

* AX_{6}
* Bonds are all 90 degrees to each other

Square Pyramidal

Square Planar

* 6 attachments, 2 lone pairs
* $\mathrm{AX}_{4} \mathrm{E}_{2}$
* 90 degrees in a plane

Lone pairs above/below

Molecule Type	Shape	Electron arrangement ${ }^{\text {t }}$	Geometry	Examples
$\mathrm{AX}_{1} \mathrm{E}_{\mathrm{n}}$	Diatomic			$\mathrm{HF}, \mathrm{O}_{2}$
$\mathrm{AX}_{2} \mathrm{E}_{0}$	Linear			$\mathrm{BeCl}_{2}, \mathrm{HgCl}_{2}, \mathrm{CO}_{2}$
$\mathrm{AX}_{2} \mathrm{E}_{1}$	Bent			$\mathrm{NO}_{2}{ }^{-}, \mathrm{SO}_{2}, \mathrm{O}_{3}$
$\mathrm{AX}_{2} \mathrm{E}_{2}$	Berv.			$\mathrm{H}_{2} \mathrm{O}, \mathrm{OF}_{2}$
$\mathrm{AX}_{2} \mathrm{E}_{3}$	Linear			$\mathrm{XeF}_{2}, \mathrm{l}_{3}-$
$\mathrm{AX}_{3} \mathrm{E}_{0}$	Trigonal planar			$\mathrm{BF}_{3}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{NO}_{9}{ }^{-}, \mathrm{SO}_{3}$
$\mathrm{AX}_{3} \mathrm{E}_{1}$	Tingonal pyramidal			$\mathrm{NH}_{3}, \mathrm{PCl}_{3}$
$\mathrm{AX}_{3} \mathrm{E}_{2}$	T-shaped			$\mathrm{ClF}_{3} . \mathrm{BrF}_{3}$
$\mathrm{AX}_{4} \mathrm{E}_{0}$	Tetrahedral			$\mathrm{CH}_{4}, \mathrm{PO}_{4}^{3-}, \mathrm{SO}_{4}^{2-}, \mathrm{ClO}_{4}^{-}$

Tuesday, March 29, 2011

$x-A_{\substack{A X_{2} \\ \text { Linear }}}^{{ }^{180}} \mathrm{X}$				
		 Bent or Angular		
	 Sawhorse or Seesaw			
	 Square pyramidal	 Square planar		

Draw Lewis structures \& predict shape * HCN

 * $\mathrm{SO}_{3}$${ }^{*} \mathrm{Cl}_{2} \mathrm{CO}$

PF_{5}

SF_{4}
BrF_{3}
SF_{6}
BrF_{5}
IO_{4}^{-}

