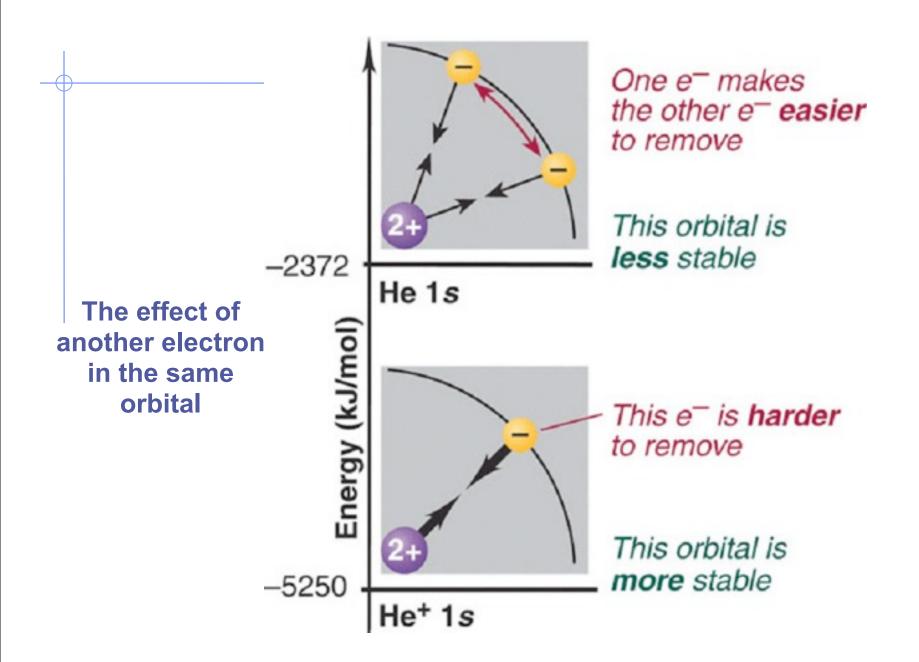
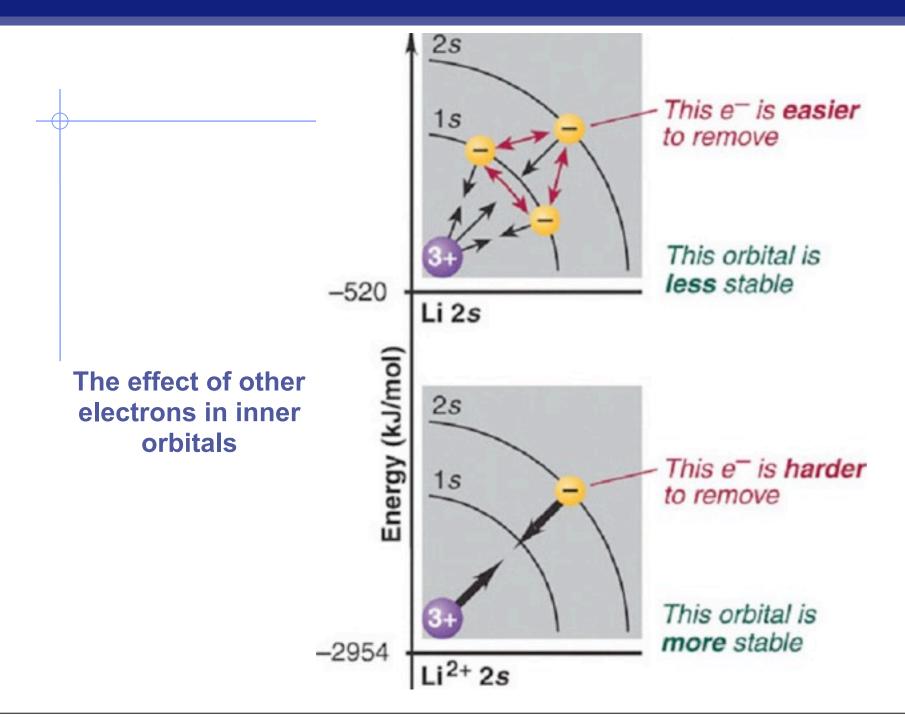

Summation of Periodic Trends

Factors Affecting Atomic Orbital Energies

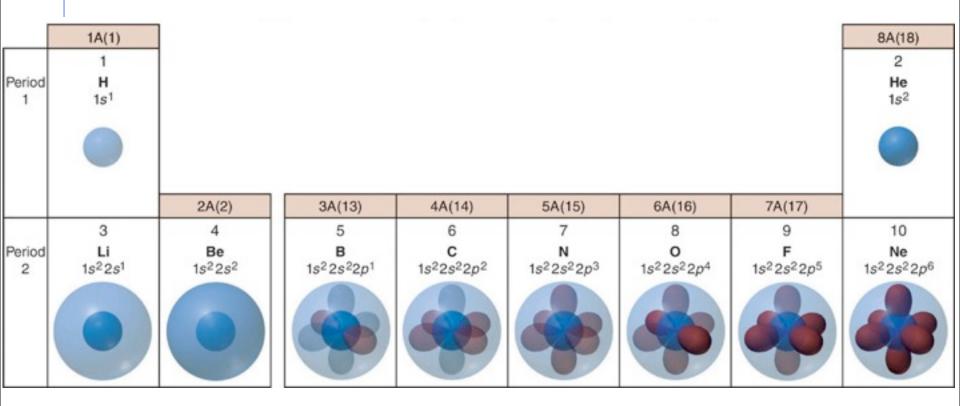
The Effect of Nuclear Charge (Z_{effective})

Higher nuclear charge lowers orbital energy (stabilizes the system) by increasing nucleus-electron attractions.

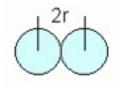

The Effect of Electron Repulsions (Shielding)


Additional electron in the same orbital (makes less stable)

An additional electron raises the orbital energy through electron-electron repulsions.

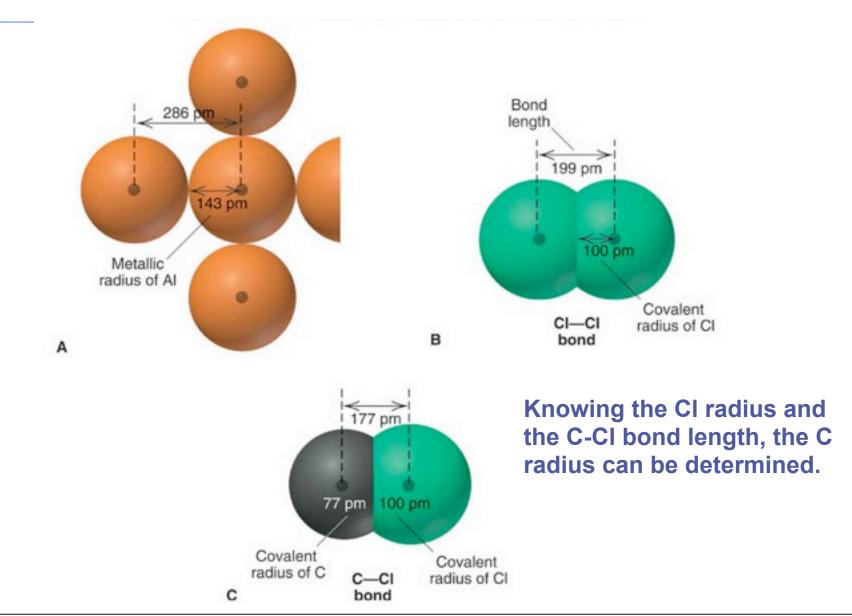

Additional electrons in inner orbitals (makes outer orbital less stable)

Inner electrons shield outer electrons more effectively than do electrons in the same sublevel.



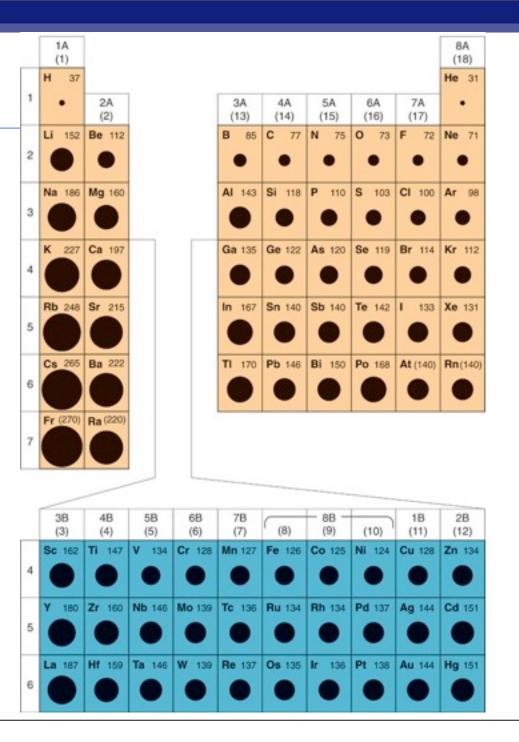
Orbital occupancy for the first 10 elements, H through Ne.

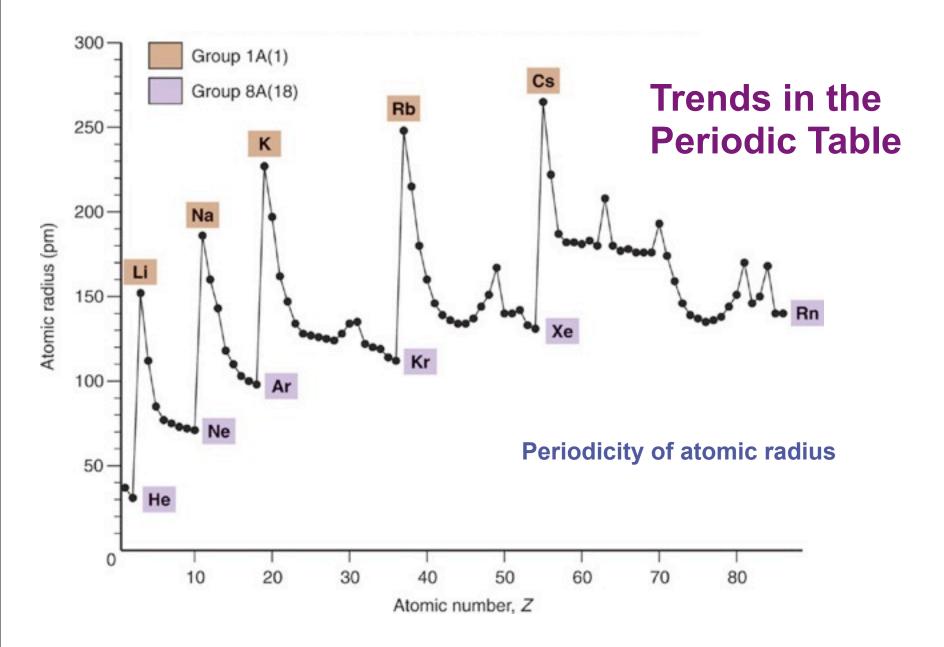
Half of the distance between nuclei in covalently bonded diatomic molecule


"covalent atomic radii"

Periodic Trends in Atomic Radius

Radius decreases across a period Increased effective nuclear charge due to decreased shielding


Radius increases down a group Addition of principal quantum levels


Defining metallic and covalent radii

Trends in the Periodic Table

Atomic radii of the main-group and transition elements.

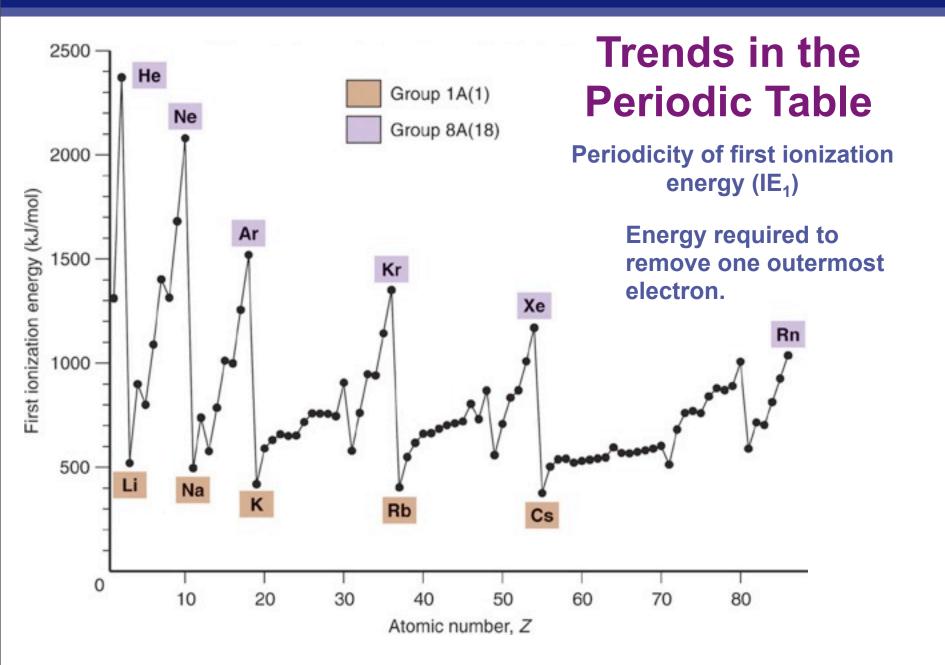
Ranking Elements by Atomic Size

- **PROBLEM:** Using only the periodic table rank each set of main group elements in order of *decreasing* atomic size:
 - (a) Ca, Mg, Sr (b) K, Ga, Ca (c) Br, Rb, Kr (d) Sr, Ca, Rb
- **PLAN:** Elements in the same group decrease in size as you go up; elements decrease in size as you go across a period.

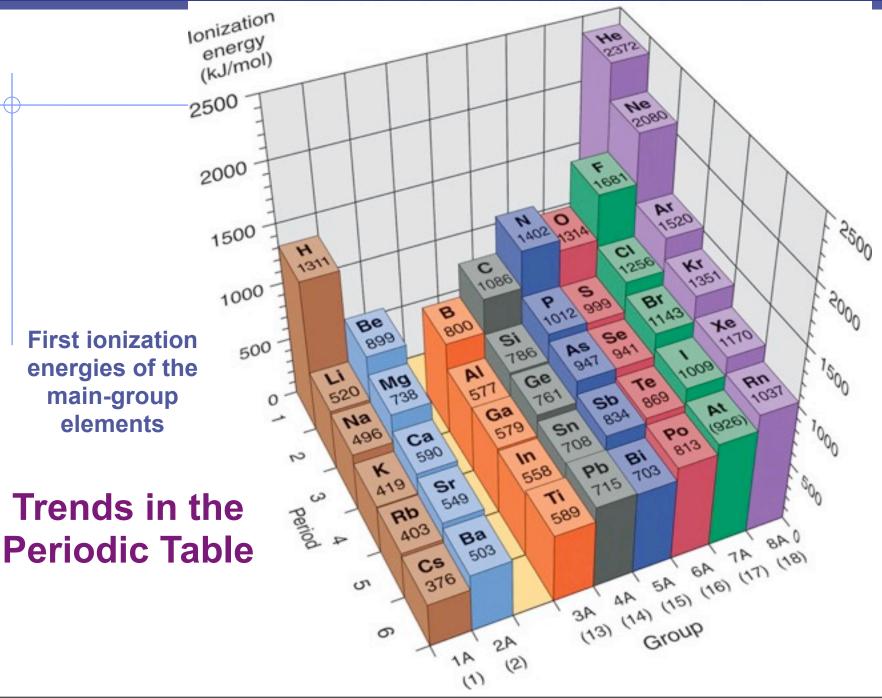
SOLUTION:

(a) Sr > Ca > Mg
These elements are in Group 2A(2).
(b) K > Ca > Ga
These elements are in Period 4.
(c) Rb > Br > Kr
Rb has a higher energy level and is far to the left. Br is to the left of Kr.
(d) Rb > Sr > Ca
Ca is one energy level smaller than Rb and Sr. Rb is to the left of Sr.

Ionization Energy the energy required to remove an electron from an atom


Increases for successive electrons taken from the same atom

Tends to increase across a period


- Electrons in the same quantum level do not shield as effectively as electrons in inner levels
- Irregularities at half filled and filled sublevels due to extra repulsion of electrons paired in orbitals, making them easier to remove

- Tends to decrease down a group
- Outer electrons are farther from the nucleus

1500 H 1311 1000 **First ionization** 500 energies of the LI main-group 0 elements 2 S **Trends in the**

Ranking Elements by First Ionization Energy

PROBLEM: Using the periodic table only, rank the elements in each of the following sets in order of *decreasing* IE₁:

(a) Kr, He, Ar (b) Sb, Te, Sn (c) K, Ca, Rb (d) I, Xe, Cs

PLAN: IE increases as you proceed up in a group; IE increases as you go across a period.

SOLUTION:

(a) He > Ar > Kr Group 8A(18) - IE decreases down a group.

(b) Te > Sb > Sn Period 5 elements - IE increases across a period.

(c) Ca > K > Rb Ca is to the right of K; Rb is below K.

(d) Xe > I > Cs I is to the left of Xe; Cs is further to the left and down one period.

Trends in the Periodic Table

The first three ionization energies of beryllium (in MJ/mol)

energy (MJ/mol)

1E2

Table 8.5 Successive Ionization Energies of the Elements Lithium Through Sodium

	Element	Number of Valence Electrons	Ionization Energy (MJ/mol)*										
Z			IE ₁	IE_2	IE ₃	IE ₄	IE ₅	IE ₆	IE ₇	IE ₈	IE ₉	IE ₁₀	
3	Li	1	0.52	7.30	11.81								
4	Be	2	0.90	1.76	14.85	21.01				C	ore electror	IS	
5	в	3	0.80	2.43	3.66	25.02	32.82						
6	С	4	1.09	2.35	4.62	6.22	37.83	47.28					
7	N	5	1.40	2.86	4.58	7.48	9.44	53.27	64.36				
8	0	6	1.31	3.39	5.30	7.47	10.98	13.33	71.33	84.08			
9	F	7	1.68	3.37	6.05	8.41	11.02	15.16	17.87	92.04	106.43		
10	Ne	8	2.08	3.95	6.12	9.37	12.18	15.24	20.00	23.07	115.38	131.43	
11	Na	1	0.50	4.56	6.91	9.54	13.35	16.61	20.11	25.49	28.93	141.37	

*MJ/mol, or megajoules per mole = 10³ kJ/mol.

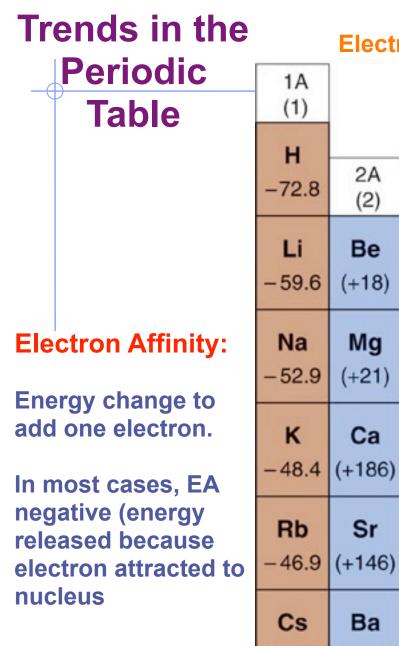
Identifying an Element from Successive Ionization Energies

PROBLEM: Name the Period 3 element with the following ionization energies (in kJ/mol) and write its electron configuration:

PLAN: Look for a large increase in energy which indicates that all of the valence electrons have been removed.

SOLUTION:

The largest increase occurs after IE_5 , that is, after the 5th valence electron has been removed. Five electrons would mean that the valence configuration is $3s^23p^3$ and the element must be phosphorous, P (Z = 15).

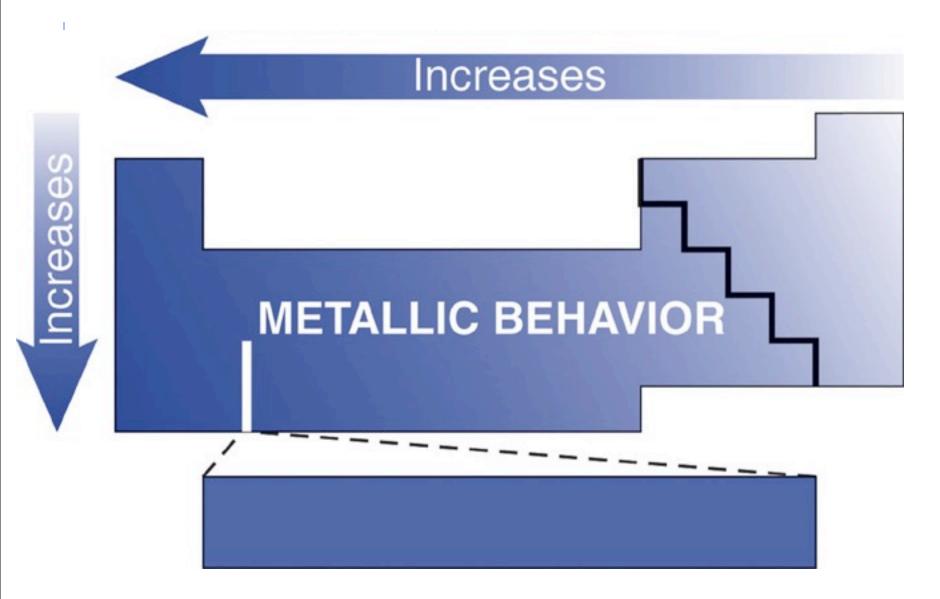

The complete electron configuration is 1s²2s²2p⁶3s²3p³.

Electronegativity

A measure of the ability of an atom in a chemical compound to attract electrons

- Electronegativities tend to increase across a period
- Electronegativities tend to decrease down a group or remain the same

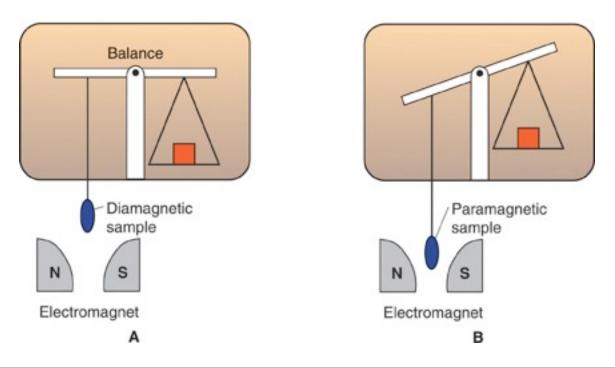
Periodic Table of Electronegativities																
H 2.1	2	I	be	elow 1	.0	ĺ	2.0	0-2.4				13	14	15	16	17
Li 1.0	Be 1.5			0–1.4 5–1.9				5-2.9 0-4.0				В 2.0	C 2.5	N 3.0	O 3.5	F 4.0
Na 0.9	Mg 1.2	3	4	5	6	7	8	9	10	11	12	Al 1.5	Si 1.8	Р 2.1	S 2.5	C1 3.0
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Тс 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5
Cs 0.8	Ba 0.9	La* 1.1	Hf 1.3	Ta 1.5	W 2.4	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2
Fr 0.7	Ra 0.9	Ac [†] 1.1		nthani tinides												


-45.5

(+46)

					8A (18)
3A	4A	5A	6A	7A	He
(13)	(14)	(15)	(16)	(17)	(0.0)
B	C	N	0	F	Ne
-26.7	- 122	+7	- 141	- 328	(+29)
AI	Si	P	S	CI	Ar
- 42.5	- 134	- 72.0	-200	- 349	(+35)
Ga	Ge	As	Se	Br	Kr
- 28.9	- 119	- 78.2	- 195	- 325	(+39)
In	Sn	Sb	Te	I	Xe
- 28.9	- 107	- 103	- 190	-295	(+41)
TI	Pb	Bi	Po	At	Rn
–19.3	- 35.1	- 91.3	- 183	-270	(+41)

Electron affinities of the main-group elements


Trends in metallic behavior

Magnetic Properties of Transition Metal Ions

A species with unpaired electrons exhibits paramagnetism. It is attracted by an external magnetic field.

Species with all paired e's, not attracted......diamagnetic

Writing Electron Configurations and Predicting Magnetic Behavior of Transition Metal Ions

PROBLEM: Use condensed electron configurations to write the reaction for the formation of each transition metal ion, and predict whether the ion is paramagnetic.

(a) $Mn^{2+}(Z = 25)$ (b) $Cr^{3+}(Z = 24)$ (c) $Hg^{2+}(Z = 80)$

PLAN: Write the electron configuration and remove electrons starting with ns to match the charge on the ion. If the remaining configuration has unpaired electrons, it is paramagnetic.

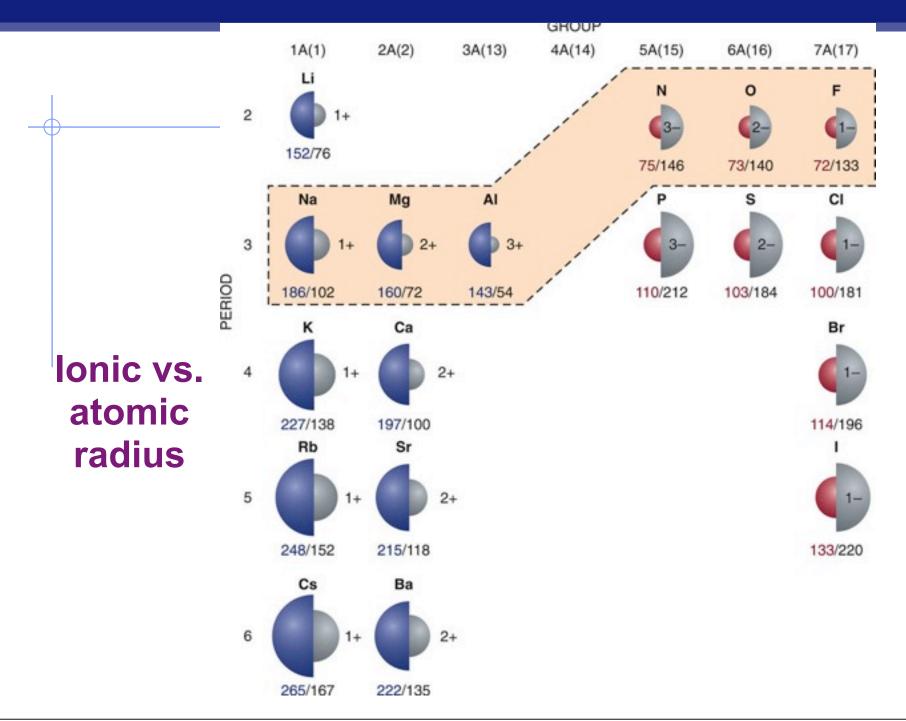
SOLUTION:

(a)
$$Mn^{2+}(Z = 25)$$
 $Mn([Ar]4s^{2}3d^{5}) \longrightarrow Mn^{2+}([Ar] 3d^{5}) + 2e^{-}$ paramagnetic

(b) $Cr^{3+}(Z = 24)$ $Cr([Ar]4s^{2}3d^{4}) \longrightarrow Cr^{3+}([Ar] 3d^{3}) + 3e^{-1}$

paramagnetic

(c) $Hg^{2+}(Z = 80)$ $Hg([Xe]6s^{2}4f^{14}5d^{10}) \longrightarrow Hg^{2+}([Xe] 4f^{14}5d^{10}) + 2e^{-1}$


not paramagnetic (is diamagnetic)

Ionic Radii

Positively charged ions formed when
 an atom of a metal loses one or more
 electrons
 Smaller than the corresponding

atom

 Negatively charged ions formed when nonmetallic atoms gain one or more electrons
 Larger than the corresponding atom

Ranking Ions by Size

PROBLEM: Rank each set of ions in order of *decreasing* size, and explain your ranking:

(a) Ca²⁺, Sr²⁺, Mg²⁺ (b) K⁺, S²⁻, Cl⁻ (c) Au⁺, Au³⁺

PLAN: Compare positions in the periodic table, formation of positive and negative ions and changes in size due to gain or loss of electrons.

SOLUTION:

(a) Sr²⁺ > Ca²⁺ > Mg²⁺

These are members of the same Group (2A/2) and therefore decrease in size going up the group.

The ions are isoelectronic; S²⁻ has the smallest Z_{eff} and therefore is the largest while K⁺ is a cation with a large Z_{eff} and is the smallest.

(c) $Au^+ > Au^{3+}$ The higher the + charge, the smaller the ion.