8.1 Explaining the Properties of Acids \& Bases

SCH4U - Chemistry, Gr. 12, University Prep

Equilibrium \& Acids \& Bases

\square So far, we have looked at equilibrium of general chemical systems:
\square We learned about the equilibrium constant K , reversibility, factors that affect or shift equilibrium, using ICE charts and calculating K_{c}
\square Now we are going to look at equilibrium, applying the concept to Acids \& Bases
${ }^{\square}$ Calculating K_{a} and K_{b}
\square Before we begin, we better review Acids \& Bases from Grade 11!!!

Common Properties of Acids \& Bases

Property	Acid	Sour
Taste	Sase	

Arrhenius Theory of Acids \& Bases

\square Based on the ions produced when they are in water
\square ACID: dissociates in water to form $\mathbf{H}^{+}{ }_{(a q)}$
$-\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}$
\square BASE: dissociates in water to form $\mathbf{O H}^{-}{ }_{(\mathrm{aq})}$
$-\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
\square LIMITATIONS:
\square does not explain some bases (i.e. ammonia, salt solutions)
\square does not explain acid-base reactions without water (i.e. gas)

Brønsted-Lowry Theory

\square Defines acids and bases regarding protons $\left(\mathrm{H}^{+}\right)$

$$
\text { proton }=\text { nucleus of a hydrogen atom }\left(\mathrm{H}^{+} \text {ion }\right)
$$

\square ACID: substance from which a proton can be removed

- "proton-donor"
\square BASE: substance that can accept a proton
- "proton-acceptor"

$$
\underset{\text { acid }}{\mathrm{HCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \leftrightarrow} \underset{\text { base }}{\leftrightarrow} \underset{\substack{\text { conjugate } \\ \text { acid }}}{\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}}+\underset{\substack{\text { conjugate } \\ \text { base }}}{\mathrm{Cl}_{(a q)}^{-}}
$$

Conjugate Acid-Base Pairs

$\mathrm{NH}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \leftrightarrow \mathrm{NH}_{4(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}$ base acid conjugate conjugate acid base
dissociation is an equilibrium reaction because it proceeds in both directions
$\square \mathrm{H}_{2} \mathrm{O}$ donates a proton in forward $r \times n \rightarrow$ acid
$\square \mathrm{NH}_{3}$ accepts a proton from $\mathrm{H}_{2} \mathrm{O} \rightarrow$ base
If a substance acts as a proton donor and a proton accepter,
it is termed "amphoteric" (i.e. water)

Fgyrin. Canjugate acid-bese pairs in the diasecintion of acetic acid in water

Conjugate Acid-Base Pairs

Conjugate Base - The species remaining after an acid has transferred its proton.

Conjugate Acid - The species produced after base has accepted a proton.

donation of	
$\begin{gathered} \text { HX } \\ \text { acid } \end{gathered}$	X^{-} conjugate base
HCl	Cl^{-}
$\mathrm{H}_{2} \mathrm{SO}_{4}$	HSO_{4}^{-}
HNO_{3}	$\mathrm{NO}_{3}{ }^{-}$
$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$
HSO_{4}^{-}	$\mathrm{SO}_{4}{ }^{2-}$
$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{COO}^{-}$
$\mathrm{NH}_{4}{ }^{+}$	NH_{3}
$\mathrm{H}_{2} \mathrm{O}$	OH^{-}

Amphoteric behaviour

Note: Water can act as acid or base (Amphoteric)

Acid	Base		Conjugate Acid	Conjugate Base
HCl	$+\mathrm{H}_{2} \mathrm{O}$	\leftrightarrow	$\mathrm{H}_{3} \mathrm{O}^{+}+$	Cl^{-}
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	$+\mathrm{H}_{2} \mathrm{O}$	\leftrightarrow	$\mathrm{H}_{3} \mathrm{O}^{+}+$	$\mathrm{HPO}_{4}{ }^{2-}$
$\mathrm{NH}_{4}{ }^{+}$	$+\mathrm{H}_{2} \mathrm{O}$	\leftrightarrow	$\mathrm{H}_{3} \mathrm{O}^{+}+$	NH_{3}
Base	Acid		Conjugate Acid	Conjugate Base
: NH_{3}	$+\mathrm{H}_{2} \mathrm{O}$	\leftrightarrow	$\mathrm{NH}_{4}{ }^{+}+$	OH^{-}
$\mathrm{PO}_{4}{ }^{3-}$	$+\mathrm{H}_{2} \mathrm{O}$		$\mathrm{HPO}_{4}{ }^{2-}+$	OH^{-}

Identify the conjugate acid-base pairs. Connect as shown.

$\mathrm{NH}_{2}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \quad \leftrightarrow \quad \mathrm{NH}_{3}+\mathrm{OH}^{-}$
$\mathrm{CN}-+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HCN}+\mathrm{OH}^{-}$
$\mathrm{HClO}_{4}+\mathrm{CH}_{3} \mathrm{COOH} \leftrightarrow \mathrm{ClO}_{4}^{-}+\mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}$
$\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-}$
$\mathrm{HSO}_{4}^{-}+\mathrm{HCl} \leftrightarrow \quad \mathrm{H}_{2} \mathrm{SO}_{4}+\quad \mathrm{Cl}-$
$\mathrm{SO}_{4}{ }^{2-}+\mathrm{HNO}_{3} \leftrightarrow \mathrm{HSO}_{4}-\quad+\mathrm{NO}_{3}-$

Lewis Acids \& Bases

Lewis defined them as:
Acid - an electron pair acceptor
Base - an electron pair donor

Base

Strong Acids

\square Examples of Strong acids:
\square Binary acids: $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$
\square Oxoacids (contain polyatomics): $\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HClO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}$

Strong acids completely dissociate in water
(equilibrium favours products, lies to the right)

This means 100% of the acid will turn into ions. So if you have 0.2 M HCl , it will turn into $0.2 \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}$
ie) $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$

$$
\begin{aligned}
& \text { isoressing acid strength } \\
& \text { isoressing acid strength }
\end{aligned}
$$

FIFIC:C The relative atrength of axsacids increases with the number of axpgen stoms.

Strong Acids

\square Strong acids dissociate 100\%
$\square \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Before dissociation

HA

HA

After dissociation

$\mathrm{H}_{3} \mathrm{O}^{+}$
(any strong acid) (any strong acid)

Strong Bases

\square Examples of strong bases:
\square Oxides \& Hydroxides of alkali metals (Group 1) and of of alkali earth metals (Group 2) below beryllium [e.g. NaOH sodium hydroxide, MgO magnesium oxide, $\mathrm{Na}_{2} \mathrm{O}$ sodium oxide]

Strong bases completely dissociate in water (equilibrium favours products, lies to the right)

- This means 100% of the base will turn into ions. So if you have 0.2 M NaOH , it will turn into $0.2 \mathrm{M} \mathrm{OH}^{-}$
ie) $\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
\square Strong bases dissociate 100\%
$\square \mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}^{-}+\mathrm{BH}^{+}$

Before dissociation

B
B

After dissociation

(any strong base) (any strong base)

Calculations that involve strong acids \& bases

\square Strong acids/bases (and strong electrolytes) completely dissociates into ions in water
$\square\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}{ }_{(a q)}$ is equal to the [strong acid]
$\square\left[\mathrm{OH}^{-}{ }_{(\text {aq) }}\right.$ is equal to the [strong base]
\square You cannot determine the concentrations of ions of weak acids/bases/electrolytes this way because they do not completely dissociate in solution (which means we will have use the concept of EQUILIBRIUM!!!)

Example

\square Find the concentration of hydronium ions in $4.5 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$

- Since HCl is a strong acid, it will completely dissociate into ions
$-\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
$-4.5 \mathrm{M} \quad 4.5 \mathrm{M}$
- So, the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is 4.5 M

Example

\square Is this solution acidic or basic: 31.9 mL of 2.75 M HCl added to 125 mL of $0.05 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$?
\square Find the moles of $\mathrm{H}_{3} \mathrm{O}^{+}$(since HCl is strong)
$\square \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
(1:1 ratio)
$\square \mathrm{n}=\mathrm{cv}=(2.75 \mathrm{M})(0.0319 \mathrm{~L})=0.0877 \mathrm{~mol}$
\square Find the moles of $\mathrm{OH}^{-}\left(\mathrm{Mg}(\mathrm{OH})_{2}\right.$ is strong)
$\square \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{OH}^{-}$(1:2 ratio)
$\square \mathrm{n}=\mathrm{cv}=(0.05 \mathrm{M})(0.125 \mathrm{~L})=0.00625 \mathrm{~mol} \times 2=0.0125$ mol of hydroxide ion
\square Combine the two! $0.0877 \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}-0.0125 \mathrm{~mol} \mathrm{OH}^{-}$ leaves us with $0.0752 \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}$
$\square \mathrm{c}=\mathrm{n} / \mathrm{v}=0.0752 / 0.1569 \mathrm{~L}=0.479 \mathrm{M}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

Homework

p. 24 in workbook

