8.1 Explaining the Properties of Acids & Bases

SCH4U – Chemistry, Gr. 12, University Prep

Equilibrium & Acids & Bases

- So far, we have looked at equilibrium of general chemical systems:
 - We learned about the equilibrium constant K, reversibility, factors that affect or shift equilibrium, using ICE charts and calculating K_c
- Now we are going to look at equilibrium, applying the concept to Acids & Bases
 Calculating K_a and K_b
- Before we begin, we better review Acids & Bases from Grade 11!!!

Common Properties of Acids & Bases

Property	Acid	Base	
Taste	Sour	Bitter	
Texture of Solution	No characteristic texture	Slippery	
Aqueous Property of Oxides	Non-metal oxides form acidic solutions: $CO_{2(g)} + H_2O_{(I)} \rightarrow H_2CO_{3(aq)}$	Metal oxides form basic solutions: $CaO_{(g)} + H_2O_{(I)} \rightarrow Ca(OH)_{2(aq)}$	
Reaction with Phenolphthalein	Colourless	Pink	
Reaction with litmus	Blue litmus → Red	Red litmus → Blue	
Reaction with Metals	Acids react with metals above H in the activity series to displace $H_{2(g)}$	Bases react with certain metals (i.e. Al) to form H _{2(g)}	
Reaction with CO ₃ ²⁻	Form CO _{2(g)}	No reaction	
Reaction with NH ₄ Cl	No reaction	Form NH ₃	
Reaction with Fatty Acids	No reaction	React to form soap (saponification reaction)	
Neutralization Reactions	Acid + Base →	Water + Salt	

Arrhenius Theory of Acids & Bases

Based on the ions produced when they are in water
 ACID: dissociates in water to form H⁺_(ag)

 $\blacksquare HCI_{(aq)} \rightarrow H^+_{(aq)} + CI^-_{(aq)}$

BASE: dissociates in water to form **OH**⁻_(aq)

■ NaOH $(aq) \rightarrow Na^+ (aq) + OH^-(aq)$

□ LIMITATIONS:

- does not explain some bases (i.e. ammonia, salt solutions)
- does not explain acid-base reactions without water (i.e. gas)

Brønsted-Lowry Theory

Defines acids and bases regarding protons (H⁺)

proton = nucleus of a hydrogen atom (H⁺ ion)

ACID: substance from which a proton can be removed

"proton-donor"

BASE: substance that can accept a proton

"proton-acceptor"

$$\begin{array}{c} HCl_{(aq)} + H_2O_{(l)} \nleftrightarrow H_3O_{(aq)}^+ + Cl_{(aq)}^- \\ acid & base & conjugate & conjugate \\ & acid & base \end{array}$$

Conjugate Acid-Base Pairs

$NH_{3(aq)}$	$+ H_2 O_{(l)}$	$\Leftrightarrow NH_{4(aq)}^{+}$	$+OH^{-}_{(aq)}$		
base	acid	conjugate			
🗆 dissocia	tion is ar	acid 1 equilibriu	base Im reactior	1 because	
it proceeds in both directions					
□ H ₂ O do	nates a pi	roton in forv	ward rxn \rightarrow	acid	
□ NH ₃ ace	cepts a pr	oton from H	$I_2O \rightarrow$	base	
and a prot	ton accepte	a proton donc r, ric" (i.e. water)	сн,-с,0 +	$\begin{array}{c} & & \\$	

conjugate pair

conjugate pair

Figure 8.3 Conjugate acid-base pairs in the dissociation of acetic acid in water

Г

Conjugate Acid-Base Pairs

Conjugate Base – The species remaining after an acid has transferred its proton.

Conjugate Acid – The species produced after base has accepted a proton.

H+ + X-		
X-		
conjugate base		
CI-		
HSO ₄ -		
NO ₃ -		
H ₂ O		
SO42-		
CH ₃ COO⁻		
NH ₃		
OH-		

Amphoteric behaviour

Note: Water can act as acid or base (Amphoteric)

Acid	Base	Conjugate Acid	Conjugate Base
HCI	+ H ₂ O	\leftrightarrow H ₃ O ⁺ +	Cl-
H ₂ PO ₄ ⁻	+ H ₂ O	\leftrightarrow H ₃ O ⁺ +	HPO ₄ ²⁻
NH ₄ +	+ H ₂ O	\leftrightarrow H ₃ O ⁺ +	NH ₃
Base	Acid	Conjugate Acid	Conjugate Base
:NH ₃	+ H ₂ O	\leftrightarrow NH ₄ ⁺ +	OH-
PO ₄ ³⁻	+ H ₂ O	\leftrightarrow HPO ₄ ²⁻ +	OH-

Identify the conjugate acid-base pairs. Connect as shown.

 $HSO_4^- + HCI \leftrightarrow H_2SO_4 + CI_-$

 SO_4^{2-} + $HNO_3 \leftrightarrow HSO_4-$ + NO_3-

Lewis Acids & Bases

Lewis defined them as:

- Acid an electron pair acceptor
- Base an electron pair donor

Strong Acids

increasing acid strength

15

(VA)

NH₃

13

(IIIA)

(IVA)

CH4

increasing electronegativity 18(VIIIA)

16

(VIA)

H₂O

H₂S

17

(VIIA)

HF

HCI

- Examples of Strong acids:
 - Binary acids: HCl, HBr, HI
 - Oxoacids (contain polyatomics): HNO₃, H₂SO₄, HClO₃, H₃PO₄
- Strong acids completely dissociate in water (equilibrium favours products, lies to the right)
- This means 100% of the acid will turn into ions. So if you have 0.2 M HCl, it will turn into 0.2 M H₃O⁺

 $HCI + H_2O \rightarrow H_3O^+ + CI^$ ie)

increasing acid strength decreasing bond strength

Strong Acids

Strong Bases

Examples of strong bases:

- Oxides & Hydroxides of alkali metals (Group 1) and of of alkali earth metals (Group 2) below beryllium
 [e.g. NaOH sodium hydroxide, MgO magnesium oxide, Na₂O sodium oxide]
- Strong bases completely dissociate in water (equilibrium favours products, lies to the right)
- This means 100% of the base will turn into ions. So if you have 0.2 M NaOH, it will turn into 0.2 M OH⁻
- ie) NaOH + $H_2O \rightarrow Na^+ + OH^-$

Strong Bases

Calculations that involve strong acids & bases

- Strong acids/bases (and strong electrolytes) completely dissociates into ions in water
 - [H₃O]⁺_(aq) is equal to the [strong acid]
 [OH]⁻_(aq) is equal to the [strong base]
- You cannot determine the concentrations of ions of weak acids/bases/electrolytes this way because they do not completely dissociate in solution (which means we will have use the concept of EQUILIBRIUM!!!)

Example

Find the concentration of hydronium ions in 4.5 mol/L HCl

- Since HCl is a strong acid, it will completely dissociate into ions
- $HCI + H_2O \rightarrow H_3O^+ + CI^-$
- 4.5 M 4.5 M
- So, the [H₃O⁺] is 4.5 M

Example

- Is this solution acidic or basic: 31.9 mL of 2.75 M HCl added to 125 mL of 0.05 M Mg(OH)₂?
 Find the moles of H₃O⁺ (since HCl is strong)
 HCl + H₂O → H₃O⁺ + Cl⁻ (1:1 ratio)
 - □ n = cv = (2.75 M)(0.0319 L) = 0.0877 mol
 - Find the moles of OH⁻ (Mg(OH)₂ is strong)
 - □ $Mg(OH)_2 + H_2O \rightarrow Mg^{2+} + 2OH^-$ (1:2 ratio)
 - n = cv = (0.05 M)(0.125L) = 0.00625 mol x 2 = 0.0125 mol of hydroxide ion
 - Combine the two! 0.0877 mol H₃O⁺ 0.0125 mol OH⁻ leaves us with 0.0752 mol H₃O⁺
 - $\Box c = n/v = 0.0752 / 0.1569 L = 0.479 M [H_3O^+]$

Homework

p. 24 in workbook