What happens to gas when temperature changes?

1) When the system is heated:

2) When the system is cooled:

- brown gas = NO_2
- colourless gas = N_2O_4

Both reactions are occurring simultaneously in a closed system at all times.

The reaction:

 N₂O_{4(g)} + energy <==> 2 NO_{2(g)} is described as reversible.
Only when both reactions are occurring at the <u>same rate</u> and no changes can be observed, a <u>chemical equilibrium</u> has been reached.

Factors to Reach Equilibrium

Equilibrium **DOES NOT** mean the same concentrations of products and reactants.

– only that the <u>rxn rates are equal</u>

Reaction rates change because of temperature change.

- equilibrium rxn rates are different at different temperatures

When chemicals are reacted, there are 3 possible outcomes:

2.

1.

3.

Factors Determining Rxn Occurrence

2.

1.

When both of these statements are true, the reaction tends to completion.

Predicting Reaction Occurrence

Example #1

$$Zn_{(s)} + 2 HCI_{(aq)} \rightarrow ZnCI_{2(aq)} + H_{2(g)} \quad \Delta H = -152 \text{ kJ}$$

Enthalpy? Entropy? Prediction?

Predicting Reaction Occurrence Example #2

$$3 C_{(s)} + 3 H_{2(g)} \rightarrow C_3 H_{6(g)}$$
 $\Delta H = +20.4 \text{ kJ}$

Predicting Reaction Occurrence

Example #3

$$2Pb(NO_3)_{2(s)} \rightarrow 2PbO_{(s)} + 4NO_{2(g)} + O_{2(g)} \quad \Delta H = +597 \text{ kJ}$$

Predicting Reaction Occurrence

- Recall, some reactions require very large E_A values.
- Therefore another factor in determining reaction occurrence.
- If no information on E_A is given, assume sufficient energy is available.