1. Collision Theory

2. Transition State Theory

C Mark Parisi, Permission required for use.

3. Catalysts

COLLISION THEORY:

The rate of rxn is proportional to the number of effective/successful collisions per second between reactant molecules.

What factors determine whether reactants could form a molecule?

(e.g. is bumping into each other enough?)

COLLISION THEORY:

Not all collisions are effective.

Effective collision:

In a game of pool, what are the two conditions that are required for an effective collision?

COLLISION THEORY:

For a collision to be effective, the molecules must collide with the proper:

COLLISION THEORY:

 Kinetic energy: A minimum kinetic energy, called activation energy (E_a), is required between reactants for a reaction to proceed.

COLLISION THEORY:

• Kinetic energy:

TRANSITION STATE THEORY:

Potential energy diagrams

TRANSITION STATE THEORY:

Draw the potential energy diagram for the reverse reaction

Reaction coordinate

TRANSITION STATE THEORY:

Examine the E_a for both reactions. What does that suggest?

E_a is different between the forward and reverse directions of a given reaction.

Generally, endothermic reactions are slower than exothermic reactions due to a higher E_a.

TRANSITION STATE THEORY:

- 1. Identify E_a , ΔH and transition state.
- 2. What are the values of E_a and ΔH ?
- 3. Endothermic or exothermic?
- 4. What are E_a and ΔH for the reverse rxn?

CATALYST:

catalyst - a substance that increases the rate of a chemical reaction without being consumed

homogeneous catalyst - exist in the same phase as the reactants

heterogeneous catalyst - exist in a different phase as the reactants

CATALYST:

Catalysts lower the E_a of a reaction

CATALYST:

Catalysts:

- bend or stretch bonds to make them easier to break / react
- reduce E_A (make transition state easier)
- bring two reactants close together
- provide a microenvironment for reactions

CATALYST:

Inhibitors - bind with the reactant or the catalyst to prevent the reaction from occurring and reducing reaction rate

