If an outside influence upsets an equilibrium, the system undergoes a change in the direction that counteracts the disturbing influence, and, the system reaches a new state of equilibrium.

 disturbances to the equilibrium are said to shift to the right (_____) or to the left (_____)

250 kJ is **evolved** when A and B react completely to give C and D.

A + 2B \longrightarrow C + D $\Delta H = -250 \text{ kJ mol}^{-1}$

250 kJ is **absorbed** when C and D react completely to give A and B.

Factors Affecting Equilibrium

5.

1.

$2 HI_{(g)} <==> H_{2(g)} + I_{2(g)}$

Given the equilibrium above, if more HI is added to the system, how will the reaction rates respond to achieve a new equilibrium?

1.

$$2 HI_{(g)} <==> H_{2(g)} + I_{2(g)}$$

What happens to the equilibrium if H_2 is removed from the system?

1.

The equilibrium will always shift to consume the substance that is added or to replace a substance that is removed.

1. Concentration

Example #1

 $Cu(H_2O)_4^{2+}(aq) + 4 CI_{(aq)}^{-} <==> CuCI_4^{2-}(aq) + 4 H_2O$

1.What happens when CI⁻ is added?

2.What happens when $CuCl_4^{2-}$ is removed?

1. Concentration

Example #2

 $Cu(H_2O)_4^{2+}(aq) + 4 CI_{(aq)}^{-} <==> CuCI_4^{2-}(aq) + 4 H_2O$

What happens when Ag⁺ ions are added? (Hint: examine your solubility rules)

2. Pressure

- pressure is changed if volume is changed
- pressure changes have limited effect on liquids or solids

2. Pressure

$2 \text{ NO}_{2(g)} <==> N_2O_{4(g)} + \text{energy}$

Given the equilibrium above, if the pressure on the system is increased, how will the reaction rates respond to achieve a new equilibrium?

2. Pressure

The equilibrium will always shift to relieve an increase in pressure or to fill up space when pressure is decreased.

2. Pressure

Example #3

$$3 H_{2(g)} + N_{2(g)} <==> 2 NH_{3(g)}$$

What happens if the volume of the system is reduced?

2. Pressure

Example #4

$$H_{2(g)} + I_{2(g)} <==> 2 HI_{(g)}$$

What happens if the volume of the system is increased?

3. Addition of inert gases

Example #5

$$3 H_{2(g)} + N_{2(g)} <==> 2 NH_{3(g)}$$

What happens if neon gas is added?

4. Presence of catalysts Example #6

$$3 H_{2(g)} + N_{2(g)} <==> 2 NH_{3(g)}$$

What happens when a catalyst is added?

5. Temperature

Example #7:

$$2 \text{ NO}_{2(g)} <==> N_2O_{4(g)} + \text{energy}$$

How does the system compensate when the temperature is increased?

5. Temperature

Example #8:

 $2 SO_{3(g)} + energy <==> 2 SO_{2(g)} + O_{2(g)}$

How does the system compensate when the temperature is decreased?