If an outside influence upsets an equilibrium, the system undergoes a change in the direction that counteracts the disturbing influence, and, the system reaches a new state of equilibrium.

- disturbances to the equilibrium are said to shift to the right (__) or to the left (\quad)

Factors Affecting Equilibrium

1.
 2.
 3.
 4.

5.

$$
2 \mathrm{HI}_{(\mathrm{g})}<===>\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}
$$

Given the equilibrium above, if more HI is added to the system, how will the reaction rates respond to achieve a new equilibrium?

$$
2 \mathrm{HI}_{(\mathrm{g})}<===>\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}
$$

What happens to the equilibrium if H_{2} is removed from the system?

The equilibrium will always shift to consume the substance that is added or to replace a substance that is removed.

1. Concentration

Example \#1

$$
\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}_{4}{ }_{4}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{Cl}_{(\mathrm{aq})}<===>\mathrm{CuCl}_{4}{ }^{2-}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}\right.
$$

1.What happens when Cl^{-}is added?
2.What happens when $\mathrm{CuCl}_{4}{ }^{2-}$ is removed?

1. Concentration

Example \#2

$$
\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}_{4}{ }_{4}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{Cl}_{(\mathrm{aq})}<===>\mathrm{CuCl}_{4}{ }^{2-}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}\right.
$$

What happens when Ag^{+}ions are added?
(Hint: examine your solubility rules)

2. Pressure

- pressure is changed if volume is changed
- pressure changes have limited effect on liquids or solids

$2 \mathrm{NO}_{2(\mathrm{~g})}<===>\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}+$ energy

Given the equilibrium above, if the pressure on the system is increased, how will the reaction rates respond to achieve a new equilibrium?

2. Pressure

The equilibrium will always shift to relieve an increase in pressure or to fill up space when pressure is decreased.

2. Pressure

Example \#3

$$
3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})}<===>2 \mathrm{NH}_{3(\mathrm{~g})}
$$

What happens if the volume of the system is reduced?

2. Pressure

Example \#4

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}<===>2 \mathrm{HI}_{(\mathrm{g})}
$$

What happens if the volume of the system is increased?
 \title{
3. Addition of inert gases
}
 \title{
3. Addition of inert gases
}

Example \#5

$$
3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})}<===>2 \mathrm{NH}_{3(\mathrm{~g})}
$$

What happens if neon gas is added?

4. Presence of catalysts

Example \#6

$$
3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})}<===>2 \mathrm{NH}_{3(\mathrm{~g})}
$$

What happens when a catalyst is added?

5. Temperature

Example \#7:

$$
2 \mathrm{NO}_{2(\mathrm{~g})}<===>\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}+\text { energy }
$$

How does the system compensate when the temperature is increased?

5. Temperature

Example \#8:
$2 \mathrm{SO}_{3(\mathrm{~g})}+$ energy $<===>2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$

How does the system compensate when the temperature is decreased?

