Chemical Systems
\#1 - Relatively easy, no ICE table required because eq'm concentrations are given
For the reaction $\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftrightarrow \mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2}(\mathrm{~g}) @ 1500^{\circ} \mathrm{C}$ an equilibrium mixture of these gases was found to have the following concentrations $[\mathrm{CO}]=0.300 \mathrm{M},\left[\mathrm{H}_{2}\right]=0.800 \mathrm{M}$ and $\left[\mathrm{CH}_{4}\right]=0.400 \mathrm{M} . \mathrm{K}_{\mathrm{c}} @ 1500^{\circ} \mathrm{C}=5.67$. Determine the equilibrium concentration of $\mathrm{H}_{2} \mathrm{O}$ in this mixture.
\#2 - Requires an ICE table because you do not know the equilibrium concentrations- no product is yet formed
For the reaction $\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}$ calculate the equilibrium concentrations of all species if 1.000 mol of each reactant is mixed in a 1.000 L flask. $\mathrm{Kc}=5.10$ at the temperature of this reaction.

		$\mathrm{CO}_{(\mathrm{g})}$	+	$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftrightarrow$	$\mathrm{CO}_{2(\mathrm{~g})}$	+
[Initial]	H	1.000	1.000	0	$\mathrm{H}_{2(\mathrm{~g})}$	
0						

[Change in] C
[Equilibrium] E
\#3 - Requires an ICE table because you do not know the equilibrium concentrations. The initial concentrations must be calculated- no product is yet formed
For the reaction $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{F}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{HF}_{(\mathrm{g})}$ calculate the equilibrium concentrations of all species if 3.000 mol of each reactant was added 1.500 L flask. K_{c} at the temperature of the reaction is 1.15×10^{2}.

		$\mathrm{H}_{2(\mathrm{~g})}$	+	$\mathrm{F}_{2}(\mathrm{~g})$	\leftrightarrow	$2 \mathrm{HF}_{(\mathrm{g})}$
[Initial]	I	2.00		2.00		0
[Change in]	C					

\#4 - Requires an ICE table because you do not know the equilibrium concentrations. Initial concentrations of reactants are given.
0.200 mol of $\mathrm{H}_{2}, 0.200 \mathrm{~mol}$ of I_{2}, and 0.200 mol of HI were placed in a 1.00 L flask and allowed to come to equilibrium. The K_{c} value of the reaction at this temperature is 49.5 . Determine the equilibrium concentrations of all species.

$$
\mathrm{H}_{2(\mathrm{~g})} \quad+\quad \mathrm{I}_{2(\mathrm{~g})} \quad \leftrightarrow \quad 2 \mathrm{HI}_{(\mathrm{g})}
$$

[Initial]
I
[Change in] C
[Equilibrium] E
\#5 - Requires an ICE table because you do not know the equilibrium concentrations. Initial concentrations of reactants must be calculated and no product is yet formed

For the reaction $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{F}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HF}_{(\mathrm{g})}$ calculate the equilibrium concentrations of each species if 3.000 mol of H_{2} and 6.000 mol of F_{2} are mixed in a 3.000 L flask. K_{c} at this temperature is 1.15×10^{2}.
$\mathrm{H}_{2(\mathrm{~g})} \quad+\quad \mathrm{F}_{2(\mathrm{~g})} \leftrightarrow \quad \mathrm{HF}_{(\mathrm{g})}$

[Initial]	I
[Change in]	C
[Equilibrium]	E

Complete the following questions. Full solutions are required for full marks. Good luck!
\#1 A sample of $\mathrm{HI}\left(9.30 \times 10^{-3} \mathrm{~mol}\right)$ was placed in an empty 2.00 L container at 1000 K . After equilibrium was reached, the concentration of I_{2} was $6.29 \times 10^{-4} \mathrm{M}$. Calculate the value of Kc at 1000 K for the reaction: $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{HI}_{(\mathrm{g})}$
\#2 When wine spoils, ethanol is oxidized to acetic acid as O_{2} from the air dissolves in the wine: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{aq})}+\mathrm{O}_{2(\mathrm{aq})} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ The value of Kc for this reaction at $25^{\circ} \mathrm{C}$ is 1.2×10^{82}. Will much ethanol remain when the reaction has reached equilibrium? Explain.
\#3 An equilibrium mixture of $\mathrm{O}_{2}, \mathrm{SO}_{2}$ and SO_{3} contains equal concentrations of SO_{2} and SO_{3}. Calculate the concentration of O_{2} if $\mathrm{Kc}=270$ for the reaction: $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$
\#4 A 5.00 L reaction vessel is filled with 1.00 mol of $\mathrm{H}_{2}, 1.00 \mathrm{~mol}$ of I_{2} and 2.50 mol of HI . Kc (at 500 K) is 129 . Calculate the equilibrium concentrations of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI at 500 K . given the reaction: $\quad \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{HI}_{(\mathrm{g})}$
\#5 The value of Kc for the equilibrium $\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$ is 4.64×10^{-3} at $25^{\circ} \mathrm{C}$. If the initial concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 0.0367 M and the initial concentration of NO_{2} is zero, what will be the concentration of both gases at equilibrium ?

