SCH4U

Chemical Systems and Equilibrium

ICE Practice Problems

#1 - Relatively easy, no ICE table required because eq'm concentrations are given

For the reaction $CH_{4(g)} + H_2O_{(g)} \leftrightarrow CO_{(g)} + 3H_2 _{(g)} @ 1500^{\circ} C$ an equilibrium mixture of these gases was found to have the following concentrations [CO] = 0.300M, $[H_2] = 0.800M$ and $[CH_4] = 0.400M$. K_c @ 1500° C = 5.67. Determine the equilibrium concentration of H_2O in this mixture.

#2 - Requires an ICE table because you do not know the equilibrium concentrations- no product is yet formed

For the reaction $CO_{(g)} + H_2O_{(g)} \leftrightarrow CO_{2(g)} + H_{2(g)}$ calculate the equilibrium concentrations of all species if 1.000 mol

of **each reactant** is mixed in a 1.000L flask. Kc = 5.10 at the temperature of this reaction.

		CO _(g) +	$H_2O_{(g)} \leftrightarrow$	CO _{2(g)} -	+ H _{2(g)}
[Initial]	I	1.000	1.000	0	0
[Change in]	С				
[Equilibrium]	E				

#3 - Requires an ICE table because you do not know the equilibrium concentrations. The initial concentrations must be calculated- no product is yet formed

For the reaction $H_{2(g)} + F_{2(g)} \leftrightarrow 2HF_{(g)}$ calculate the equilibrium concentrations of all species if 3.000 mol of **each**

reactant was added 1.500L flask. K_c at the temperature of the reaction is 1.15 x 10².

		$H_{2(g)}$	+	F ₂ (g)	\leftrightarrow	2HF _(g)
[Initial] [Change in]	l C	2.00		2.00		0
[Equilibrium]	E					

#4 - Requires an ICE table because you do not know the equilibrium concentrations. Initial concentrations of reactants are given.

0.200mol of H₂, 0.200mol of I₂, and 0.200mol of HI were placed in a 1.00 L flask and allowed to come to equilibrium. The K_c value of the reaction at this temperature is 49.5. Determine the equilibrium concentrations of all species.

 $H_{2(g)}$ + $I_{2(g)}$ \leftrightarrow $2HI_{(g)}$

[Initial] I [Change in] C [Equilibrium] E

#5 - Requires an ICE table because you do not know the equilibrium concentrations. Initial concentrations of reactants must be calculated and no product is yet formed

For the reaction $H_{2(g)} + F_{2(g)} \rightarrow 2HF_{(g)}$ calculate the equilibrium concentrations of each species if 3.000 mol of H_2 and 6.000mol of F_2 are mixed in a 3.000L flask. K_c at this temperature is 1.15×10^2 .

		$H_{2(g)}$	+	F _{2(g)} ←	→ HF _(g)
[Initial]	I				
[Change in]	С				
[Equilibrium]	E				

SCH4U Chemical Systems and Equilibrium

Equilibrium Assignment

Complete the following questions. Full solutions are required for full marks. Good luck!

- #1 A sample of HI (9.30 x 10⁻³ mol) was placed in an empty 2.00 L container at 1000K. After equilibrium was reached, the concentration of I₂ was 6.29 x 10⁻⁴ M. Calculate the value of Kc at 1000K for the reaction: $H_{2(g)} + I_{2(g)} \Leftrightarrow 2 HI_{(g)}$
- #2 When wine spoils, ethanol is oxidized to acetic acid as O₂ from the air dissolves in the wine: $C_2H_5OH_{(aq)} + O_{2(aq)} \Leftrightarrow CH_3COOH_{(aq)} + H_2O_{(l)}$ The value of Kc for this reaction at 25°C is 1.2 x 10⁸². Will much ethanol remain when the reaction has reached equilibrium? Explain.
- #3 An equilibrium mixture of O₂, SO₂ and SO₃ contains equal concentrations of SO₂ and SO₃. Calculate the concentration of O₂ if Kc = 270 for the reaction: $2 SO_{2(g)} + O_{2(g)} \Leftrightarrow 2 SO_{3(g)}$
- #4 A 5.00 L reaction vessel is filled with 1.00 mol of H₂, 1.00 mol of I₂ and 2.50 mol of HI. Kc (at 500K) is 129. Calculate the equilibrium concentrations of H₂, I₂ and HI at 500K. given the reaction: $H_{2(g)} + I_{2(g)} \Leftrightarrow 2HI_{(g)}$
- #5 The value of Kc for the equilibrium $N_2O_4 \Leftrightarrow 2NO_{2(g)}$ is 4.64 x 10^{-3} at 25°C. If the initial concentrations of N_2O_4 is 0.0367M and the initial concentration of NO_2 is zero, what will be the concentration of both gases at equilibrium ?