Enthalpy of Formation and Hess' Law

1. From the following information calculate the $\Delta \mathrm{H}_{\mathrm{f}}$ of nitrogen monoxide, $\mathrm{NO}_{(\mathrm{g})}$.

$$
\begin{array}{ll}
4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\ell)} & \Delta \mathrm{H}^{\circ}=-1170 \mathrm{~kJ} \\
4 \mathrm{NH}_{3(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{~N}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\ell)} & \Delta \mathrm{H}^{\circ}=-1530 \mathrm{~kJ}
\end{array}
$$

2. Given the $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ of copper(II) chloride, $\mathrm{CuCl}_{2(\mathrm{~s})}$ is -220.1 kJ and of copper (I) chloride, $\mathrm{CuCl}_{(\mathrm{s})}$ is \mid -137.2 kJ , calculate $\Delta \mathrm{H}^{\circ}$ for the following reaction:

$$
\mathrm{CuCl}_{2(\mathrm{~s})}+\mathrm{Cu}_{(\mathrm{s})} \rightarrow 2 \mathrm{CuCl}_{(\mathrm{s})}
$$

3. Using the values for $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$, calculate $\Delta \mathrm{H}^{\circ}$ for each of the following reactions:
a. $\quad 2 \mathrm{~F}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow 4 \mathrm{HF}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}$
b. $\mathrm{CS}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$
c. $\quad \mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}$
d. $10 \mathrm{~N}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})} \rightarrow 10 \mathrm{~N}_{2(\mathrm{~g})}+3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
4. Using the values $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ calculate the amount of heat released if 200 g of brandy containing 40.0% by weight ethanol, C 2 H 5 OH , is poured over a plum pudding and burned. (Hint: first write an equation for the combustion of ethanol.)
5. From the following three thermochemical equations:
a. $\quad \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{CO}_{(\mathrm{g})} \rightarrow 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{2(\mathrm{~g})}$
$\Delta \mathrm{H}^{\circ}=-25 \mathrm{~kJ}$
b. $\quad 3 \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+\mathrm{CO}_{(\mathrm{g})} \rightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4(\mathrm{~s})}+\mathrm{CO}_{2(\mathrm{~g})}$
$\Delta \mathrm{H}^{\circ}=-47 \mathrm{~kJ}$
c. $\mathrm{Fe}_{3} \mathrm{O}_{4(\mathrm{~s})}+\mathrm{CO}_{(\mathrm{g})} \rightarrow 3 \mathrm{FeO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
$\Delta \mathrm{H}^{\circ}=+38 \mathrm{~kJ}$
calculate the enthalpy change for the reaction
$\mathrm{FeO}_{(\mathrm{s})}+\mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{Fe}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$

Enthalpy and Phase Change

6. Calculate the amount of heat released when 1.0 kg of water freezes.
7. Calculate the amount of heat necessary to vapourize 350 mL of diethyl ether, $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$. The density of diethyl ether is $0.713 \mathrm{~g} / \mathrm{mL}$ and the $\Delta \mathrm{H}_{\text {vap }}$ for diethyl ether is $384 \mathrm{~J} / \mathrm{mol}$.

Calorimetry

8. A 24.6 g sample of nickel is heated to $110.0^{\circ} \mathrm{C}$ and then placed in a coffee cup calorimeter containing 125 g of water at a temperature of $23.00^{\circ} \mathrm{C}$. After the nickel cools, the final temperature of the metal and water is $24.83^{\circ} \mathrm{C}$. Assuming that no heat has escaped to the surroundings or has been absorbed by the calorimeter, calculate the specific heat of nickel.
9. When solutions of an acid and a base are mixed, heat is released. Using a coffee cup calorimeter, 100 mL of $0.100 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid are mixed with 100 mL of $0.100 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide solution. The initial temperature of the solutions was $22.6^{\circ} \mathrm{C}$ and the temperature after mixing was $32.4^{\circ} \mathrm{C}$. Calculate the molar enthalpy of neutralization for the reaction. Assume that the density and specific heat of each solution is the same as that of water.
10. A 135 g sample of dilute hydrochloric acid is placed in a copper calorimeter with mass of 465 g . The temperature of the acid and calorimeter is $11.7^{\circ} \mathrm{C}$. A mass of 5.00 g of aluminum metal is reacted with the acid. After the reaction has ceased, the temperature is $22.3^{\circ} \mathrm{C}$. Calculate the molar enthalpy change for the reaction: $\mathrm{Al}_{(\mathrm{s})}+3 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{AlCl}_{3(\mathrm{aq})}+3 / 2 \mathrm{H}_{2(\mathrm{~g})}$
11. A copper flame calorimeter has a mass of 305 g and contains 255 g of water. When 1.01 g of propanol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ is burned in the calorimeter, the calorimeter and contents increase in temperature by $28.8^{\circ} \mathrm{C}$. Calculate the enthalpy of combustion of propanol.
12. Using the reaction for the combustion of ethane: $2 \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+7 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$ determine the following:
a. The molar heat of combustion of ethane using bond energies from the Appendix.
b. The molar heat of combustion of ethane using the standard enthalpy of formation from the Appendix.

Explain why the answers you get in a. and b. could be expected to be slightly different.
13. The following combustion reaction takes place in the oxyacetylene torch: $\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}+5 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
a. Calculate the $\Delta \mathrm{H}^{\circ}$ for this reaction.
b. Construct a graph for this reaction showing the relative enthalpy of formation of reactants and products and overall $\Delta \mathrm{H}^{\circ}$ combustion
14. Graphically determine ΔH° for the following reaction $2 \mathrm{FeO}_{(\mathrm{s})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$ using $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ found in the Appendix.
15. Given the following information

$2 \mathrm{ClF}_{3(\mathrm{~g})}+2 \mathrm{NH}_{3(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+6 \mathrm{HF}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})}$	$\Delta \mathrm{H}^{\circ}=-1196 \mathrm{~kJ}$
$\mathrm{~N}_{2} \mathrm{H}_{4(\ell)}+\mathrm{O}_{2(\mathrm{~g}} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$	$\Delta \mathrm{H}^{\circ}=-622 \mathrm{~kJ}$
$4 \mathrm{NH}_{3(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{~N}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$	$\Delta \mathrm{H}^{\circ}=-1530 \mathrm{~kJ}$

determine $\Delta \mathrm{H}^{\circ}$ for the following reaction:
$3 \mathrm{~N}_{2} \mathrm{H}_{4(\ell)}+4 \mathrm{ClF}_{3(\mathrm{~g})} \rightarrow 3 \mathrm{~N}_{2(\mathrm{~g})}+12 \mathrm{HF}_{(\mathrm{g})}+2 \mathrm{Cl}_{2(\mathrm{~g})}$
16. Calculate $\Delta \mathrm{H}^{\circ}$ for the reaction
$2 \mathrm{H}_{3} \mathrm{BO}_{3(\mathrm{aq})} \rightarrow \mathrm{B}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
using the following data:

$$
\begin{array}{ll}
\mathrm{H}_{3} \mathrm{BO}_{3(\mathrm{aq})} \rightarrow \mathrm{HBO}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} & \Delta \mathrm{H}^{\circ}=-0.02 \mathrm{~kJ} \\
2 \mathrm{~B}_{2} \mathrm{O}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow \mathrm{H}_{2} \mathrm{~B}_{4} \mathrm{O}_{7(\mathrm{~s})} & \Delta \mathrm{H}^{\circ}=-17.5 \mathrm{~kJ} \\
\mathrm{H}_{2} \mathrm{~B}_{4} \mathrm{O}_{7(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\ell))} \rightarrow 2 \mathrm{~N}_{2(\mathrm{~g})}+4 \mathrm{HBO}_{2(\mathrm{aq})} & \Delta \mathrm{H}^{\circ}=-11.3 \mathrm{~kJ}
\end{array}
$$

