Thermochemistry
 - The study of the ENERGY CHANGES that accompany changes in matter

3 Ways:

Chemical: Hydrogen is burned as fuel in the space shuttle's main engines:
$2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

Physical: Hydrogen boils at
$-252^{\circ} \mathrm{C}$ (or only about $20^{\circ} \mathrm{C}$ above absolute zero):
$\mathrm{H}_{2(1)} \rightarrow \mathrm{H}_{2(\mathrm{~g})}$

Nuclear: Hydrogen undergoes nuclear fusion in the Sun, producing helium:
$\mathrm{H}+\mathrm{H} \rightarrow \mathrm{He}$

Thermodynamics

FIRST LAW OF THERMODYNAMICS

the total amount of energy in the universe is constant
(conservation of energy)

System v. Surroundings

chemical system a set of reactants and products under study, usually represented by a chemical equation
surroundings all matter around the system that is capable of absorbing or releasing thermal energy

open

closed

isolated

Exchange: mass \& energy
energy nothing

- Universe = System + Surroundings

Universe $=$ System + Surroundings

System
(flask, contents)
OR

OR
Surroundings
(flask and subtances
in contact with outside
System
(contents)
of flask)

Endothermic v. Exothermic

Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings.

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\text { energy }
$$

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\text { energy }
$$

Endothermic process is any process in which heat has to be supplied to the system from the surroundings.

$$
\begin{gathered}
\text { energy }+2 \mathrm{HgO}(\mathrm{~s}) \longrightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \\
\text { energy }+\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{gathered}
$$

Thermodynamics

1. heat, symbol: q-the transfer of energy due to contact
2. thermal energy - the energy of an object directly related to temperature
3. temperature - measure of internal energy of an object due to particle motion (kinetic energy)

Heat Capacity

Different types of matter require different amounts of heat transfer to change the same amount of temperature .

Water is unusual in that it can absorb and release a lot of heat without the temperature changing drastically.

Specific Heat Capacity

specific heat capacity, c - the amount of heat transfer required to change the temperature of one gram of a substance one degree Celsius or Kelvin

Table 1 Specific Heat Capacities of Substances

Substance	Specific heat capacity, \boldsymbol{c}
ice	$2.01 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$
water	$4.18 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$
steam	$2.01 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$
aluminum	$0.900 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$
iron	$0.444 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$
methanol	$2.918 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$

$\mathrm{c}=\mathrm{q} / \mathrm{m} \Delta \mathrm{T}$

Pick one!

- Would you rather stir hot soup with an aluminum spoon ($c=0.900$) or a wooden spoon ($c=2.01$)? Why?

$\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$

1. c - specific heat capacity

- J/g• ${ }^{\circ} \mathrm{C}$ OR J/g•K

2. q - heat

- J

3. m -mass

- g

4. $\Delta \mathrm{T}$ - change in temperature - ${ }^{\circ} \mathrm{C}$ OR K

Example \#1

If a gold ring with a mass of 5.5 g changes in temperature from $25.0^{\circ} \mathrm{C}$ to $28.0^{\circ} \mathrm{C}$, how much heat energy, in Joules, has it absorbed?

The value of the specific heat capacity of gold is 0.129 .

Solution

- $\mathrm{m}=5.5 \mathrm{~g}$
- $\Delta \mathrm{T}=28-25=3^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{c}=0.129 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
- $q=? ? ?$
- $q=m c \Delta T$
- $q=(5.5)(0.129)(3)$
- $q=2.12 \mathrm{~J}$

Example \#2

What would be the final temperature if 250.0 J of heat were transferred into 10.0 g of methanol ($\mathrm{c}=2.9 \mathrm{~J} /$ $\mathrm{g} \cdot{ }^{\circ} \mathrm{C}$) initially at $20^{\circ} \mathrm{C}$?

Solution

- $q=250 \mathrm{~J}$
- $\mathrm{m}=10 \mathrm{~g}$
- $\mathrm{c}=2.9 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
- $\mathrm{T} 1=20^{\circ} \mathrm{C}$
- T2 = ?
- $\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$
- $\mathrm{q}=\mathrm{mc}(\mathrm{T} 2-\mathrm{T} 1)$
- $\mathrm{T} 2=\mathrm{q} / \mathrm{mc}+\mathrm{T} 1$
- $28.6^{\circ} \mathrm{C}$

Application of Heat

 Capacity- all chemical reactions result in heat transfer
- understanding heat transfer properties is important for building materials
- food is evaluated by the amount of energy it releases

Calorimetry

calorimetry - the measure of heat change due to a chemical reaction

Calorimetry

bomb calorimeter

- reaction chamber allows heat transfer to the surrounding water, all contained within an insulated container

Calorimetry

coffee cup

 calorimeter

Example \#3

When 1.02 g of steric acid, $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}$, was burned completely in a bomb calorimeter, the temperature of the calorimeter rose by $4.26^{\circ} \mathrm{C}$. The heat capacity of the calorimeter was $9.43 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. Calculate the total heat of combustion of steric acid in $\mathrm{kJ} / \mathrm{mol}$.

Solution
$\cdot \mathrm{m}=1.02 \mathrm{~g}$
${ }^{\circ} \mathrm{s}=9.43 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$ (notice no grams!)

- $\Delta \mathrm{T}=4.26^{\circ} \mathrm{C}$
- $q=s \Delta T$
- $q=(9.43)(4.26)$
- $q=40.17 \mathrm{~kJ}$
- Find moles using $\mathrm{n}=\mathrm{m} / \mathrm{M}$
- $\mathrm{n}=1.02$ / 284.36
- $\mathrm{n}=0.0036 \mathrm{~mol}$
- Final: $11158.3 \mathrm{~kJ} / \mathrm{mol}$

Example \#4

175 g of water was placed in a coffee cup calorimeter and chilled to $10^{\circ} \mathrm{C}$. Then 4.90 g of sulfuric acid was added at $10^{\circ} \mathrm{C}$ and the mixture was stirred. The temperature rose to $14.9^{\circ} \mathrm{C}$. Assume the specific heat capacity of the solution is 4.2 $\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. Calculate the heat produced in kJ and the heat produced per mole of sulfuric acid.
$m_{\text {water }}=175 \mathrm{~g}$
$\mathrm{m}_{\text {acid }}=4.9 \mathrm{~g}$
T1 $=10^{\circ} \mathrm{C}$

- $\mathrm{T} 2=14.9^{\circ} \mathrm{C}$
- $\mathrm{C}=4.2 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
- $q=m c \Delta T$
- $q=(175+4.9)(4.2)(4.9)$
- $q=3702.3 \mathrm{~J}----3.7 \mathrm{~kJ}$
- Find moles of sulfuric acid
- $\mathrm{n}=4.9 / 98=0.05 \mathrm{~mol}$
- Final answer $74 \mathrm{~kJ} / \mathrm{mol}$

Example \#5

The reaction of HCl and NaOH is exothermic. A student placed 50.0 mL of 1.00 M HCl at $25.5^{\circ} \mathrm{C}$ in a coffee cup calorimeter and then added 50.0 mL of 1.00 M NaOH also at $25.5^{\circ} \mathrm{C}$. The mixture was stirred and the temperature quickly increased to $32.4^{\circ} \mathrm{C}$. What is the heat of the reaction in $\mathrm{J} / \mathrm{mol}$ of HCl ?
c of $\mathrm{H}_{2} \mathrm{O}=4.2 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
liquid density $=1.00 \mathrm{~g} / \mathrm{mL}$

- $\mathrm{T} 1=25.5^{\circ} \mathrm{C}$
- $\mathrm{T} 2=32.4^{\circ} \mathrm{C}$
- $\mathrm{v}_{\text {total }}=100 \mathrm{~mL} \quad \mathrm{~m}=100 \mathrm{~g}$
${ }^{-} \mathrm{C}=4.2 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
- $q=m c \Delta T$
- $q=(100)(4.2)(6.9)$
- $q=2898 \mathrm{~J}$
- Find moles HCl (50 mL of 1.0M)
- $\mathrm{n}=\mathrm{cv}$
- $\mathrm{n}=(1.0)(0.05)=0.05 \mathrm{~mol}$
- Final answer: $57960 \mathrm{~J} / \mathrm{mol}$

Heat lost $=$ Heat gained

A 26.6 g sample of mercury is heated to $110.0^{\circ} \mathrm{C}$ and then placed in 125 g of water in a coffee-cup calorimeter. The initial temperature of the water is
$23.00^{\circ} \mathrm{C}$. The specific heat capacity of water is $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, and the specific heat capacity of mercury is $0.139 \mathrm{~J} / \mathrm{g} \bullet$ ${ }^{\circ} \mathrm{C}$. What is the final temperature of the water and the mercury?

Solution

- MERCURY
- $\mathrm{m}=26.6 \mathrm{~g}$
- T1 $=110^{\circ} \mathrm{C}$
- $\mathrm{c}=0.139$
$\cdot \mathrm{C}=4.184$
$\cdot \mathrm{T} 2=? \quad$ SAME $\cdot \mathrm{T} 2=$?

$$
\begin{aligned}
\text { q lost }= & q \text { gained } \\
-q & =q \\
-m c \Delta T & =m c \Delta T
\end{aligned}
$$

Solution

- $\mathrm{mc} \Delta \mathrm{T}=\mathrm{mc} \Delta \mathrm{T}$
- - (26.6)(0.139)(T2-110) $=(125)(4.2)(T 2-23)$

