Match the unit with its description:

1.	amount of substance	A.	amu or u
2.	density	В.	g
3.	mass	C.	g/mL
4.	molar mass	D.	g/mole
5.	molecular mass	E.	L
6.	volume	F.	mole

- 1. Chemical reactions between metals and non-metals primarily involve:
 - a. Sharing of electrons
 - b. Transfer of electrons
 - c. Interactions between protons
 - d. Interactions between protons and electrons
- 2. All of the following have noble gas configurations **except**:
 - a. Cl⁻
 - b. N³⁻
 - c. Mg²⁺
 - d. P^{3+}
- 3. The following is a list of the usual charge found on the ions of a series of elements: Y-, W²⁺, Z²⁻, V³⁺ and X³⁻. State which elements are most likely to be metals.
 - a. W and V.
 - b. V and X.
 - c. X, Y and Z.
 - d. None are metals

- 4. How many <u>valence electrons</u> does a nitrogen atom have?
 - a. 3
 - b. 5
 - c. 7
 - d. 14
- 5. Which of the following is a group of ONLY non-metals?
 - a. Li, Na, K, Rb
 - b. H, He, Li, Be
 - c. F, Cl, Br, I
 - d. B, Al, Sc, Y
- 6. Which is the largest alkali metal in the periodic table?
 - a. Li
 - b. Rb
 - c. Be
 - d. Cs
- 7. Identify the atom that has the largest value for electronegativity.
 - a. He
 - b. F
 - c. Si
 - d. Na

1. Writ	e chemical formulas for the compounds:	:				
a.	a. sodium chloride		magnesium fluoride			
	b. ammonium sulfate					
	potassium nitrate		dinitrogen pentoxide			
d.	calcium hydroxide	h.	sulphur trioxide			
2. Nam	ne the following:					
a.	CO					
b.	CO ₂					
C.	N- 60					
d.						
e.						
4. Choc l d	ose the correct formula for perphosphoric and H ₃ PO ₄ (aq) o. H ₂ PO ₄ (aq) d. H ₃ PO ₅ (aq) d. H ₂ PO ₅ (aq) ose the correct formula for iron(III) nitrate: a. FeN o. Fe(NO ₃) ₃ c. Fe ₃ NO ₃ d. Fe ₃ N	cid:				
5. Unde	er specific conditions, magnesium and nitro	gen	are bonded together.			
á	a. State the formula of the compound:					
ŀ	b. Name the compound:					
(c. State the type of bond formed:					
Ó	d. Carbon and oxygen form a different type of bond. Explain how these two types of bonding are different.					

1. Calcu	late the molar m	nasses of the follow	ving:			
a. H	20	b. CaCO ₃	c.	(NH ₄) ₃ PO ₄	d.	Al(OH)₃
2. Perfo	rm the following	g calculations. Sho	w yo	ur work.		
a. Ca	alculate the mas	s of 0.500 mol of (CO.			
b. H	ow many moles	of KOH are presen	t in a	25.0 g sample of	the	substance?
3. Liquid	d water is produc	ced when hydroge	n gas	and oxygen gas (comb	oine.
a.	List the reacta	ant(s) in this reactio	on			
b.	List the produ	ıct(s)				
C.	Write a balanc	ced equation for th	e rea	ction, including pl	nysic	al states
ammoniı a. b. c.	onium sulphate, (Num sulphate? 70 g/mol 92 g/mol 114 g/mol 132 g/mol	NH4)2SO4 is an impor	tant s	synthetic fertilizer.	What	is the molar mass of
a. b. c.	L moles of a subst CuSO4 CaHPO5 CaSO4 CuCl	tance has a mass of	260 <u>(</u>	g, then the substanc	e ma	y be:

Balance the following equations:

a.
$$Zn + HCI \rightarrow ZnCl_2 + H_2$$

b.
$$Fe_2(SO_4)_3$$
 + $KOH \rightarrow K_2SO_4$ + $Fe(OH)_3$

c. Fe +
$$O_2 \rightarrow Fe_2O_3$$

2. Balance the following reactions and state the type of reaction.

a. ___ NaOH + ___
$$H_2SO_4 \rightarrow$$
 ___ Na₂SO₄ + ___ H_2O

b.
$$_$$
 KCIO₃ \rightarrow $_$ KCI + $_$ O₂

c. ___
$$C_4H_{10} +$$
___ $O_2 \rightarrow$ ___ $CO_2 +$ ___ H_2O

3. Predict the products of the following reactions:

a.
$$Na_3PO_4$$
 + HCl \rightarrow ______

b. Mg +
$$H_2CO_3$$
 \rightarrow _____

4. Write a net ionic equation for: $Cu(s) + 2 AgNO_3(aq) \rightarrow Cu(NO_3)_2 (aq) + 2 Ag(s)$

5. When balanced, the mole ratio for calcium hydroxide reacting with aluminum sulphate the following reaction is: $Ca(OH)_2(aq) + Al_2(SO_4)_3(aq) \rightarrow CaSO_4(s) + Al(OH)_3(s)$

- a. 1:1
- b. 2:1
- c. 2:3
- d. 3:1

1. In a reaction between sulfur and oxygen, 80.0 g of sulfur dioxide is formed. What mass of sulfur was burned?

$$S + O_2 \rightarrow SO_2$$

2. What mass of silver is precipitated (formed) when 40.0 g of copper reacts with an excess of silver nitrate in solution, according to the following equation:

$$Cu(s) + 2 AgNO_{3(aq)} \rightarrow Cu(NO_3)_{2(aq)} + 2 Ag(s)$$

1. In a combustion reaction, 72.15 g of pentane, $C_5H_{12}(g)$, reacts with 300.0 g of oxygen according to the equation below:

 $C_5H_{12}(g) + 8 O_2(g) \rightarrow 5 CO_2(g) + 6 H_2O(g)$

a. Identify the limiting reactant.

b. Calculate the moles of excess reactant remaining at the end of the experiment.

c. Using what you have of the limiting reactant, calculate the mass of carbon dioxide produced.

- 1. Concentration of solutions.
 - a. Find the molar concentration of chloride ions in a 400.0 mL solution containing 79.25 g of $SrCl_2$.
 - b. A 675 mL sample of 1.85 mol/L sodium chlorate solution is diluted by adding 325 mL of water. Find the concentration of the diluted solution. [2]
- 2. What volume of 14.00 mol/L stock solution is needed to make 1.75 L of 8.35 mol/L solution?
 - a. 293 mL
 - b. 2.93 L
 - c. 104 mL
 - d. 1.04 L
- 3. If 67.2 g of copper(II) chloride is dissolved in enough water to make 250 mL of solution, what is the molar concentration of the solution?
 - a. 2.5 mol/L
 - b. 2.0 mol/L
 - c. 1.0 mol/L
 - d. 0.50 mol/L
 - 4. A student mixes 15.0 mL of 0.250 mol/L aqueous sodium hydroxide with 20.0 mL of 0.400 mol/L aqueous aluminum nitrate.
 - a. Write the balanced chemical equation.
 - b. Determine the limiting reagent.
 - c. Using what you have of the limiting reagent, determine the MASS of the precipitate formed.

1. Some antacid products contain aluminium hydroxide, Al(OH)₃, to neutralize excess stomach acid. What volume of a 0.10 mol/L stomach acid, HCl, can be neutralized by 912 mg of aluminium hydroxide. The reaction is shown:

 $3 \text{ HCl} + \text{Al}(\text{OH})_3 \rightarrow \text{AlCl}_3 + 3 \text{ H}_2\text{O}$