ENERGY CHANGES \& RATES OF REACTION

STUDYING THE RATES OF CHEMICAL REACTIONS IS KNOWN AS "KINETICS"

WHAT IS KINETICS?

\square THE RATE AT WHICHCHEMICAL REACTIONS OCCUR
\square THE CHANGE IN CONCENTRATION OF REACTANTS OVER time
\square THE CHANGE IN CONCENTRATION OF PRODUCTS OVER TIME

Figure 7.1.1 As a reaction proceeds (a) the concentration of reactants decreases and (b) the concentration of products increases.

HOW DO WE MEASURE RATES?

Chemical reactions indicate the overall change that is observed. Most reactions take place through a series of steps which are usually too quick to observe.
\square CHANGEINMASS
\square CHANGE IN CONCENTRATION
\square changeinvolume
\square change in pressure
\square CHANGEINCOLOUR
\square CHANGEINCONDUCTIVITY
\square CHANGE IN LIGHT ABSORPTION

what affects rates?

- Temperature
- concentration of Reactants
- surface area
- catalysts
- The Nature of the Reactants
- Chemical compounds vary considerably in their chemical reactivities

but why?

\square increase temperature, increase rate of reaction \& vice versa

\square At higher temperature, molecules have more energy
\square therefore, more molecules will have enough energy to overcome Ea and to form products

Temperature \& Rates

effect of concentration

Figure 7.2.10 Increasing the concentration of an aqueous reactant increases the average rate of the reaction.
\square increase concentration, increase rate of reaction \& vice versa
\square Recall-concentration is mol/volume ($c=n / v$)
\square increasing pressure of a gas has the same effect as increasing concentration:
\square more particles in a particular space means more chances of colliding

effect of surface area

\square increase surface area, increase rate of reaction ε vice versa
\square what dissolves faster: a lump of sugar or a spoonful of fine sugar?
\square more surface area will give more opportunities for the reaction to take place. What about particle size???

effect of catalysts

\square a catalyst is a substance that speeds up a reaction without actually being used up itself
\square catalysts provide an alternate pathway for the reaction with lower energy

Figure 7.2.16 Catalysts lower the activation energy $\left(E_{0}\right)$ and so increase the rate of reaction.

Figure 7.2.17 Cotolysts lower the octivation energy $\left(\mathrm{E}_{\mathrm{o}}\right)$ so that more collisions will result in product formotion.

What catalysts can do!

Nature of Reactants

REACTION RATES

\square THERATE OFA CHEMICAL REACTIONCANBE DETERMINED BY MONITORING THE CHANGEIN CONCENTRATION OF EITHER REACTANTS DISAPPEARING OR BY THE PRODUCTS APPEARINGAS A FUNCTION OF time.
\square REACTIONRATE $=-[A] / \Delta T$ OR $[B] / \Delta T$

1.00 mol A

0 mol B

0.54 mol A
0.46 mol B

0.30 mol A
0.70 mol B

Example I: Reaction Rates

$$
\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(a q)+\mathrm{HCl}(a q)
$$

Time, $t(s)$
$\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right] \mathrm{M}$

0.0	0.1000
50.0	0.0905
100.0	0.0820
150.0	0.0741
200.0	0.0671
300.0	0.0549
400.0	0.0448
500.0	0.0368
800.0	0.0200
10,000	0

In this reaction, the concentration of butyl chloride, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$, was measured at various times, t .

Rate $=\frac{-\Delta\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right]}{\Delta t}$Note: by convention, rates are positive. So, if you are working with reactants disappearing, you must multiply by -1 !

Calculating Reaction Rates

$$
\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}(a q)+\mathrm{H}_{2} \mathrm{O}\left(\eta \longrightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(a q)+\mathrm{HCl}(a q)\right.
$$

Time, $t(\mathbf{s})$	$\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right](\mathrm{M})$	Average Rate, \mathbf{M} / \mathbf{s}
0.0	0.1000	1.9×10^{-4}
50.0	0.0905	1.7×10^{-4}
100.0	0.0820	1.6×10^{-4}
150.0	0.0741	1.4×10^{-4}
200.0	0.0671	1.22×10^{-4}
300.0	0.0549	01×10^{-4}
400.0	0.0448	0.80×10^{-4}
500.0	0.0368	
800.0	0.0200	
10,000	0	

The average rate of the reaction over each interval is the change in concentration divided by the change in time

The most common method of changing a reaction rate is through changing the concentration of reactants.

Mathematically:

$$
\text { rate }=\frac{\Delta \text { concentration }}{\Delta \text { time }}
$$

Units?

$$
\begin{aligned}
& \mathrm{mol} / \mathrm{s} \\
& \mathrm{~mol} / \mathrm{L} \cdot \mathrm{~s}=\mathrm{M} / \mathrm{s}
\end{aligned}
$$

Reaction Rates

$$
\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(a q)+\mathrm{HCl}(a q)
$$

- A plot of concentration vs. time for this reaction yields a curve like this.
- The slope of a line tangent to the curve at any point is the instantaneous rate at that time.
o secants yield the average rate

Reaction Rates

$$
\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(a q)+\mathrm{HCl}(a q)
$$

- The reaction slows down with time because the concentration of the reactants decreases.
o so there are less molecules to collide and react

Figure 7.1.A Graph of reaction of CaCO_{3} with eaxess HO to produce CO_{2}

Reaction Rate Determination

$$
\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq})
$$

- Note that the average rate decreases as the reaction proceeds.
o This is because as the reaction goes forward, there are fewer collisions between the reacting molecules.

Reaction Rates and Stoichiometry

$$
\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(a q)+\mathrm{HCl}(a q)
$$

O In this reaction, the ratio of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ to $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ is 1:1.

- Thus, the rate of disappearance of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ is the same as the rate of appearance of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$.

$$
\text { Rate }=\frac{-\Delta\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right]}{\Delta t}=\frac{\Delta\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right]}{\Delta t}
$$

Reaction Rates \& Stoichiometry

Suppose that the mole ratio is not 1:1?

Example
 $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HI}(\mathrm{g})$

2 moles of HI are produced for each mole of H_{2} used.

$$
\text { rate }=-\frac{\Delta\left[H_{2}\right]}{\Delta t}=\frac{1}{2} \frac{\Delta[H I]}{\Delta t}
$$

The rate at which H_{2} disappears is only half of the rate at which HI is generated

TRY IT!

$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
NO_{2} IS BEING PRODUCED AT A RATE OF $5.00 \times 10^{-6} \mathrm{M} / \mathrm{S}$. WHAT IS THE RATE OF DECOMPOSITION OF $\mathrm{N}_{2} \mathrm{O}_{5}$?

1) WRITE THE RATE EXPRESSION:

RATE $=\Delta\left[N O_{2}\right] / \Delta T=5.00 \times 10^{-6} \mathrm{M} / \mathrm{S}$
2) LOOK AT THE RATIO IN THE EQUATION: FOR EVERY MOLE OF NO_{2} MADE, $1 / 2 \mathrm{~N}_{2} \mathrm{O}_{5}$ IS DECOMPOSED

RATE $=-\Delta\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] / \Delta T=1 / 2 \Delta\left[\mathrm{NO}_{2}\right] / \Delta T$
$\operatorname{SUB} \mid \mathrm{N}!\Delta\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] / \Delta T=1 / 2\left(5.00 \times 10^{-6} \mathrm{M} / \mathrm{S}\right)$
$=2.5 \times 10^{-6} \mathrm{M} / \mathrm{s}$

TRY IT!

\square P.FIN YOUR WORKBOOK
$\square \# 1-3,9-11$

