A simple mathematical relationship defines each reaction at chemical equilibrium.

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}<===>2 \mathrm{HI}_{(\mathrm{g})}
$$

- can always be developed from the balanced chemical equation
- $\mathrm{K}_{\text {eq }}$ will always have a specific value at specific environmental conditions
-if the conditions change, the $\mathrm{K}_{\text {eq }}$ will also change
- units for $\mathrm{K}_{\text {eq }}$ will never be used

EQUTLTBRTUM LAW

Example \#1

a) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}<===>2 \mathrm{NH}_{3(\mathrm{~g})}$

$$
\text { b) } 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}<===>2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

How are the equilibrium laws of the following equations related?
i) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}<====>2 \mathrm{NH}_{3(\mathrm{~g})}$
ii) $2 \mathrm{NH}_{3(\mathrm{~g})}<===>\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}$

How are the equilibrium laws of the following equations related?
i) $\mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}<====>\mathrm{PCl}_{5(\mathrm{~g})}$
ii) $2 \mathrm{PCl}_{3(\mathrm{~g})}+2 \mathrm{Cl}_{2(\mathrm{~g})}<====2 \mathrm{PCl}_{5(\mathrm{~g})}$

What is the equilibrium law of the sum of the following reactions?
i) $2 \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}<=>2 \mathrm{~N}_{2} \mathrm{O}_{(\mathrm{g})}$
ii) $2 \mathrm{~N}_{2} \mathrm{O}_{(\mathrm{g})}+3 \mathrm{O}_{2(\mathrm{~g})}<=>4 \mathrm{NO}_{2(\mathrm{~g})}$

When chemical equilibria are added together, the equilibrium constants are multiplied together.
$\mathrm{K}_{\text {eq final } \mathrm{rxn}}=\mathrm{K}_{\mathrm{eq} \mathrm{rxn} 1} \times \mathrm{K}_{\mathrm{eq} \mathrm{rxn} 2}$

EQUTLTBRTUM LAW

Example \#2

$$
\begin{aligned}
& \text { At } 25^{\circ} \mathrm{C}, \mathrm{~K}_{\text {eq }}=7.0 \times 10^{25} \text { for: } \\
& 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}<===>2 \mathrm{SO}_{3(\mathrm{~g})}
\end{aligned}
$$

What is the value of $\mathrm{K}_{\text {eq }}$ for:

$$
\mathrm{SO}_{3(\mathrm{~g})}<===>\mathrm{SO}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})}
$$

$\mathrm{K}_{\text {eq }}=7.0 \times 10^{25}$ inversed, to the power of 0.5
$=1.195 \times 10^{-13}$
$=1.2 \times 10^{-13}$

EQUTLTBRTUM LAW

MAGNITUDE OF $\mathbb{K}_{\text {eq }}$

The value of $\mathrm{K}_{\text {eq }}$ (large or small) can provide a hint to the ratio of reactants to products at equilibrium.

EQUTLTBRTUM LAW

MAGNITUDE OF $\mathrm{K}_{\text {eq }}$

1. $\mathrm{K}_{\text {eq }}$ is very large $\left(\mathrm{K}_{\mathrm{eq}}>1\right)$

- [products] [reactants]

2. $\mathrm{K}_{\mathrm{eq}} \approx 1$

- [products] [reactants]

3. K_{eq} is very small $\left(\mathrm{K}_{\mathrm{eq}}<1\right)$

- [products] [reactants]

MAGNITUDE OF $\mathbf{K}_{\text {eq }}$

Example \#3

Which of the following reactions will tend to proceed farthest toward completion?

$$
\begin{aligned}
\text { a) } \mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})}< & ===>2 \mathrm{HBr}_{(\mathrm{g})} \\
& \mathrm{K}_{\text {eq }}=1.4 \times 10^{-21}
\end{aligned}
$$

b) $2 \mathrm{NO}_{(\mathrm{g})}<===>\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$

$$
\mathrm{K}_{\mathrm{eq}}=2.1 \times 10^{30}
$$

c) $2 \mathrm{BrCl}_{(\mathrm{g})}<===>\mathrm{Br}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$

$$
\mathrm{K}_{\mathrm{eq}}=0.195
$$

EQUILIBRIUM - SOLIDS AND LIQUIDS

What is the concentration of a solid or liquid? (i.e. $\mathrm{H}_{2} \mathrm{O}$)

Does the concentration of these pure compounds change?
ex. 1 mol NaHCO 3 occupies $38.9 \mathrm{~cm}^{3}$ 2 mol NaHCO 3 occupies $77.8 \mathrm{~cm}^{3}$

Molar concentration remains the same. Solids and liquids are unaffected by concentration

EQUILITBRIUM LAW - K EQUILIBRIUM - SOLIDS AND LIQUIDS

In the equilibrium law, solids and liquids do not need to be included as it becomes part of the equilibrium constant.
$\mathrm{NH}_{3(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}<===>\mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$

$$
\mathrm{k}_{\mathrm{eq}}=\frac{\left[\mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}\right]\left[\mathrm{OH}^{-}(\mathrm{aq)})\right]}{\left[\mathrm{NH}_{3(\mathrm{aq})}\right]}
$$

EOUTLTBRTUM LAW - Keq
 EQUILIBRIUM - SOLIDS AND LIQUIDS

Example \#4

Write the equilibrium law for the following reactions:
a) $\mathrm{CaCO}_{3(\mathrm{~s})}<===>\mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
b) $2 \mathrm{NaHCO}_{3(\mathrm{~s})}<===>\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})}$
c) $\mathrm{CaO}_{(\mathrm{s})}+\mathrm{SO}_{2(\mathrm{~g})}<===>\mathrm{CaSO}_{3(\mathrm{~s})}$

EQUTLTBRIUM LAW EQUILIBRIUM - SOLIDS AND LIQUIDS

Example \#4

d) $2 \mathrm{Hg}_{(\mathrm{I})}+\mathrm{Cl}_{2(\mathrm{~g})}<===>\mathrm{Hg}_{2} \mathrm{Cl}_{2(\mathrm{~s})}$
e) $\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{HCl}_{(\mathrm{g})}<===>\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}$

EQUILTBRRIUM LAW - EQUILIBRIUM - TEMPERATURE

Will temperature change the value of K_{eq} ? Why or why not?

Reactions are endothermic or exothermic and therefore will be affected by the addition or removal of heat.

EQUTLTBRTUM LAW - Keq

EQUILIBRIUM - TEMPERATURE

$$
3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})}<===>2 \mathrm{NH}_{3(\mathrm{~g})}+\text { heat }
$$

a)What is the equilibrium law?
b)Which way does equilibrium shift when temperature increases? How will $\mathrm{K}_{\text {eq }}$ change?
c)When temperature decreases?

EQUTLIBRIUM LAW - Keq

EQUILIBRIUM - TEMPERATURE

$$
\text { heat }+\mathrm{PCl}_{5(\mathrm{~g})}<===>\mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

a)What is the equilibrium law?
b)Which way does equilibrium shift when temperature increases? How will $\mathrm{K}_{\text {eq }}$ change?
c)When temperature decreases?

