Two types of questions:

1.calculating K_{eq} from known concentration values

2.calculating concentration values when K_{eq} is given

Calculating K_{eq}

Example #1

$$N_2O_{4(g)} \le 2 NO_{2(g)}$$

At 25°C, the equilibrium concentrations are: $[N_2O_4] = 0.0292 \text{ mol} / L$ $[NO_2] = 0.0116 \text{ mol} / L$ Calculate K_{eq} at 25°C.

$$.: k_{eq} = 4.61 \times 10^{-3}$$

Calculating K_{eq} Example #2 $N_{2(g)} + 3 H_{2(g)} <==> 2 NH_{3(g)}$

- At 200°C, the concentrations at equilibrium are:
- $[N_2] = 2.12, [H_2] = 1.75, and [NH_3] = 84.3$

Calculate K_{eq} at 200°C.

: the
$$k_{eq}$$
 is 625

Calculating K_{eq}

Example #3

$$H_{2(g)} + I_{2(g)} <==> 2 HI_{(g)}$$

Initial moles in a 2.00 L flask: $[H_2] = 0.200$ mol and $[I_2] = 0.200$ mol

At equilibrium, $[I_2] = 0.020 \text{ mol} / L.$

a)What is K_{eq} at steady conditions? b)What percent of iodine vapour reacted?

ICE tables

Whenever questions involve initial conditions changing to reach equilibrium, ICE tables are a good method to organize your information.

- I = initial concentrations
- **C** = change in concentrations
- **E** = equilibrium concentrations

Calculating K_{eq} - Example #3 Initial moles in a 2.00 L flask: $[H_2] = 0.200$ mol and $[I_2] = 0.200$ mol At equilibrium, $[I_2] = 0.020$ mol / L.

.: $\%I_2$ reacted = 80%

$$K_{eq} = 64$$

Wednesday, March 5, 2014

Calculating K_{eq}

Example #4

2.00 mol of HI in 2.00 L flask at 425°C react to produce H_2 and I_2 . At equilibrium, $[H_2]$ and $[I_2] = 0.214$ mol / L.

What is K_{eq} for this reaction?

Calculating K_{eq} - Example #4

2.00 mol of HI in 2.00 L flask at 425°C react to produce H_2 and I_2 . At equilibrium, $[H_2]$ and $[I_2] = 0.214$ mol / L.

What is K_{eq} for this reaction?

 $2 HI_{(g)} <=> H_{2(g)} + I_{2(g)}$

: the
$$K_{eq}$$
 is 0.140

Ι

С

Ε

EQUILIBRIUM CALCULATIONS Calculating K_{ea} Example #5 $N_{2(q)} + 3 H_{2(q)} <==> 2 NH_{3(q)}$ Initial concentrations: $[N_2] = 0.32 \text{ M} \text{ and } [H_2] = 0.66 \text{ M}$ What is K_{ea} when equilibrium $[H_2]$ is

0.30 M?

Calculating K_{eq} - Example #5 Initial concentrations: $[N_2] = 0.32$ M and $[H_2] = 0.66$ M What is K_{eq} when equilibrium $[H_2]$ is 0.30 M?

:
$$k_{eq} = 11$$

Calculating K_{eq} - Example #6

Calculate K_{eq}.

$2 C_{(s)} + O_{2(g)} <==> 2 CO_{(g)}$ I 10 8 20 C 15

:
$$k_{eq} = 2$$

Wednesday, March 5, 2014

Homework:

- <u>Textbook Questions</u>
- Read Section 7.1
- p 428 #1
- p 437 # 6, 7
- p 438 # 3, 4, 7, 8, 9
- p 448 449 #6