Two types of questions:

1.calculating $K_{\text {eq }}$ from known concentration values

2.calculating concentration values when K_{eq} is given

Calculating $\mathrm{K}_{\text {eq }}$

Example \#1

$$
\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}<===>2 \mathrm{NO}_{2(\mathrm{~g})}
$$

At $25^{\circ} \mathrm{C}$, the equilibrium concentrations are:
$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.0292 \mathrm{~mol} / \mathrm{L}$
$\left[\mathrm{NO}_{2}\right]=0.0116 \mathrm{~mol} / \mathrm{L}$
Calculate $\mathrm{K}_{\text {eq }}$ at $25^{\circ} \mathrm{C}$.

$$
\therefore \mathrm{k}_{\text {eq }}=4.61 \times 10^{-3}
$$

Calculating $\mathrm{K}_{\text {eq }}$

Example \#2

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}<===>2 \mathrm{NH}_{3(\mathrm{~g})}
$$

At $200^{\circ} \mathrm{C}$, the concentrations at equilibrium are:
$\left[\mathrm{N}_{2}\right]=2.12,\left[\mathrm{H}_{2}\right]=1.75$, and $\left[\mathrm{NH}_{3}\right]=84.3$
Calculate $\mathrm{K}_{\text {eq }}$ at $200^{\circ} \mathrm{C}$.
.$:$ the $\mathrm{k}_{\text {eq }}$ is 625

Calculating $\mathrm{K}_{\text {eq }}$

Example \#3

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}<===>2 \mathrm{HI}_{(\mathrm{g})}
$$

Initial moles in a 2.00 L flask:
$\left[\mathrm{H}_{2}\right]=0.200 \mathrm{~mol}$ and $\left[\mathrm{I}_{2}\right]=0.200 \mathrm{~mol}$
At equilibrium, $\left[\mathrm{I}_{2}\right]=0.020 \mathrm{~mol} / \mathrm{L}$.
a) What is $K_{e q}$ at steady conditions?
b)What percent of iodine vapour reacted?

ICE tables

Whenever questions involve initial conditions changing to reach equilibrium, ICE tables are a good method to organize your information.

I = initial concentrations
C = change in concentrations
$\mathrm{E}=$ equilibrium concentrations

Calculating K_{eq} - Example \#3

Initial moles in a 2.00 L flask: $\left[\mathrm{H}_{2}\right]=0.200 \mathrm{~mol}$ and $\left[\mathrm{I}_{2}\right]=0.200 \mathrm{~mol}$ At equilibrium, $\left[\mathrm{I}_{2}\right]=0.020 \mathrm{~mol} / \mathrm{L}$.

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}<=>\quad 2 \mathrm{HI}_{(\mathrm{g})}
$$

I

C
E
a) What is $K_{e q}$ at steady conditions?
b) What percent of iodine vapour reacted?
.$: \% \mathrm{I}_{2}$ reacted $=80 \%$
$\therefore \mathrm{K}_{\text {eq }}=64$

Calculating K_{eq}

Example \#4
2.00 mol of HI in 2.00 L flask at $425^{\circ} \mathrm{C}$ react to produce H_{2} and I_{2}. At equilibrium, $\left[\mathrm{H}_{2}\right]$ and $\left[\mathrm{I}_{2}\right]=0.214 \mathrm{~mol} / \mathrm{L}$.

What is $\mathrm{K}_{\text {eq }}$ for this reaction?

Calculating $\mathrm{K}_{\text {eq }}$ - Example \#4

2.00 mol of HI in 2.00 L flask at $425^{\circ} \mathrm{C}$ react to produce H_{2} and I_{2}. At equilibrium, $\left[\mathrm{H}_{2}\right]$ and $\left[\mathrm{I}_{2}\right]=0.214 \mathrm{~mol} / \mathrm{L}$.

What is K_{eq} for this reaction?

$$
2 \mathrm{HI}_{(\mathrm{g})} \quad<=>\quad \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}
$$

I
C
E
\therefore the K_{eq} is 0.140

Calculating $\mathrm{K}_{\text {eq }}$

Example \#5

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}<===>2 \mathrm{NH}_{3(\mathrm{~g})}
$$

Initial concentrations:
$\left[\mathrm{N}_{2}\right]=0.32 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=0.66 \mathrm{M}$
What is $\mathrm{K}_{\text {eq }}$ when equilibrium $\left[\mathrm{H}_{2}\right.$] is 0.30 M ?

Calculating $\mathrm{K}_{\text {eq }}$ - Example \#5

Initial concentrations: $\left[\mathrm{N}_{2}\right]=0.32 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=0.66 \mathrm{M}$
What is $K_{\text {eq }}$ when equilibrium $\left[\mathrm{H}_{2}\right]$ is 0.30 M ?

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \quad<=>\quad 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

I
C
E
$\therefore \mathrm{k}_{\mathrm{eq}}=11$

Calculating $\mathrm{K}_{\text {eq }}$ - Example \#6

Calculate K_{eq}.

$\therefore \mathrm{k}_{\mathrm{eq}}=2$

Homework:

- Textbook Questions
- Read Section 7.1
- p 428 \#1
- p 437 \# 6, 7
- p 438 \# 3, 4, 7, 8, 9
- p 448 - 449 \#6

