Example #1

 $CH_{4(g)} + H_2O_{(g)} <==> CO_{(g)} + 3 H_{2(g)}$

At 1500°C, $K_{eq} = 5.67$, [CO] = 0.300 M, $[H_2] = 0.800$ M and, $[CH_4] = 0.400$ M What is $[H_2O]$ at equilibrium?

$$K_{eq} = [CO][H_2]^3$$

[CH_4][H_2O]

.: $[H_2O]$ at equilibrium was $6.77 \times 10^{-2}M$

Wednesday, March 5, 2014

Example #2

$$N_{2(g)} + 3 H_{2(g)} <==> 2 NH_{3(g)}$$

What is $[NH_3]$ when $[N_2] = 0.45$ M, $[H_2] = 1.10$ M and Keq = 1.7×10^{-2} ?

$$K_{eq} = [NH_3]^2 [N_2][H_2]^3$$

.: the $[NH_3]$ is $1.0 \times 10^{-1} M$

Wednesday, March 5, 2014

Example #3 At equilibrium, Keq = 4.06. If 0.100 mol of CO and 0.100 mol of $H_2O_{(g)}$ are placed in a 1.00 L container, a) What are the concentrations of the reactants and products at equilibrium?

b) What is the final mass of $CO_{2(g)}$?

$$CO_{(g)}$$
 + $H_2O_{(g)} <=> CO_{2(g)}$ + $H_{2(g)}$
I
E

Example #3

- a) What are the concentrations of the reactants and products at equilibrium?
- b) What is the final mass of $CO_{2(g)}$?

$$CO_{(g)}$$
 + $H_2O_{(g)} <=> CO_{2(g)}$ + $H_{2(g)}$

a) ::
$$[CO_{(g)}] = 3.32 \times 10^{-2} M$$
, $[H_2O_{(g)}] = 3.32 \times 10^{-2} M$,
 $[CO_{2(g)}] = 6.68 \times 10^{-2} M$, $[H_{2(g)}] = 6.68 \times 10^{-2} M$

Example #3

If 0.100 mol of CO and 0.100 mol of H₂O_(a) are placed in a 1.00 L container,

- a) What are the concentrations of the reactants and products at equilibrium?
- b) What is the final mass of $CO_{2(g)}$?

$$CO_{(g)}$$
 + $H_2O_{(g)} <=> CO_{2(g)}$ + $H_{2(g)}$

C=<u>n</u> V

\therefore 2.94g of CO_{2(g)} were produced

Wednesday, March 5, 2014

Example #4 If initial $[H_2] = 0.200$ M and initial $[I_2] = 0.200$ M. $K_{eq} = 55.6$ What is [HI] at equilibrium?

$$\begin{array}{cccc} H_{2(g)} & + & I_{2(g)} & <=> 2 \ HI_{(g)} \\ \hline \\ H_{2(g)} & & I \\ \hline \\ H_{2(g)} & &$$

Example #4 If initial $[H_2] = 0.200$ M and initial $[I_2] = 0.200$ M. $K_{eq} = 55.6$ What is [HI] at equilibrium?

$$H_{2(g)}$$
 + $I_{2(g)}$ <=> 2 $HI_{(g)}$

Example #5

 $CO_{(g)} + H_2O_{(g)} <==> CO_{2(g)} + H_{2(g)}$

At equilibrium, $K_{eq} = 10.0$ A reaction vessel is found to contain 0.80 M CO, 0.050 M H₂O, 0.50 M CO₂ and 0.40 M H₂.

Determine if the reaction is at equilibrium.

When testing if conditions are at equilibrium Q is the symbol used, rather than K_{eq}.

Q is the "test K_{eq} " variable.

Q = [products] [reactants]

Example #5

$$CO_{(g)} + H_2O_{(g)} <==> CO_{2(g)} + H_{2(g)}$$

At equilibrium, $K_{eq} = 10.0$. A reaction vessel is found to contain 0.80 M CO, 0.050 M H₂O, 0.50 M CO₂ and 0.40 M H₂.

Determine if the reaction is at equilibrium.

$$Q = [CO_2][H_2]$$
$$[CO][H_2O]$$

Since $k_{eq} \neq Q$, then the reaction is_

Summarizing ICE Tables

- 1. Write out the balanced equation.
- 2. All values in the table must have mol/L units.
- 3. Initial [product] = 0, unless otherwise stated.
- 4. Changes in concentration always occur in the same stoichiometric ratio.
- 5. Reactants and products will change in opposite directions from each other.

Homework

- P.465 #1,2
- P.466 #3,4
- P.472#5,6