Standard enthalpy of formation (ΔH_f°): Also called the standard heat of formation of a substance

Standard heat of formation: The amount of heat absorbed or released when one mole of the substance is formed at 25°C and 100kPa (SATP) from its elements <u>in their</u> <u>standard states</u>

ΔH_f^o units are always in kJ/mol

Standard heat of formation: The amount of heat absorbed or released when one mole of the substance is formed at 25°C and 100kPa (SATP) from its **elements** in their standard states

Example: What equation represents the formation of nitric acid?

What are these elements in their standard (most common) states?

$$1/_2 H_{2(g)} + 1/_2 N_{2(g)} + 3/2 O_{2(g)} \rightarrow HNO_{3(I)}$$

The ΔH_f° for elements in their standard states are zero

Compound	$\Delta G_{f}^{\circ}/\mathbf{kJ} \operatorname{mol}^{-1}$	Compound	$\Delta G_{f}^{\circ}/\mathbf{kJ} \operatorname{mol}^{-1}$	
AgCl(s)	-109.7	$H_2O(g)$	-228.6	
$AgN_3(s)$	378.5	$H_2O(l)$	-237.2	
$Ag_2O(s)$	-10.8	$H_2O_2(l)$	-114.0	
$Al_2O_3(s)$	- 1576.4	$H_2S(g)$	-33.0	
$Br_2(l)$	0.0	HgO(s)	-58.5	
$\operatorname{Br}_2(g)$	3.1	$I_2(s)$	0.0	
CaO(s)	-604.2	$I_2(g)$	19.4	
$CaCO_3(s)$	-1128.8	KCl(s)	-408.3	
C-graphite	0.0	KBr(s)	-393.1	
C-diamond	2.9	MgO(s)	-569.6	
$CH_4(g)$	-50.8	$MgH_2(s)$	76.1	
$C_2H_2(g)$	209.2	$NH_3(g)$	16.7	
$C_2H_4(g)$	68.2	NO(g)	86.7	
$C_2H_6(g)$	-32.9	$NO_2(g)$	51.8	
$C_6H_6(l)$	124.5	$N_2O_4(g)$	98.3	
CO(g)	-137.3	$NF_3(g)$	-124.7	
$\mathrm{CO}_2(g)$	-394.4	NaCl(s)	-384.0	
CuO(s)	-127.2	NaBr(s)	-347.6	
$Fe_2O_3(s)$	-741.0	$O_3(g)$	163.4	
HBr(g)	-53.2	$\mathrm{SO}_2(g)$	-300.4	
HCl(g)	-95.3	$\mathrm{SO}_3(g)$	-370.4	
HI(g)	1.3	ZnO(s)	-318.2	

Determine the equations for the formation of:

Don't forget that the equation must result in the formation of **one** mole of the desired compound.

Now we can assign the ΔH°_{f} of the product as the ΔH° of the whole reaction

 $2C_{(s)} + 3H_{2(g)} + 1/2O_{2(g)} \rightarrow C_2H_5OH_{(I)} \quad \Delta H^\circ = -235.2kJ/mol$

This additional equation may assist solving Hess' Law questions.

How are these equations and ΔH^{o}_{f} values useful?

$$CaO_{(s)} + H_2O_{(I)} \rightarrow Ca(OH)_{2(s)}$$

By knowing the ΔH°_{f} of each of the chemicals in the above reaction, you can calculate the ΔH° of the reaction without using thermochemical equations and Hess' Law

ΔH°_{f}

Formation reactions and their ΔH°_{f} values may be manipulated to determine balanced equation and the ΔH° value of chemical reactions.

Don't forget that the equations should be multiplied by the appropriate factor, as necessary.

Using ΔH°_{f} values, calculate the ΔH° of combustion of one mole of ethanol to produce carbon dioxide gas and liquid water.

$\begin{array}{c} C_2H_5OH_{(I)} \\ -235.2kJ/mol \end{array} + 3 O_{2(g)} \rightarrow 2 CO_{2(g)} + 3 H_2O_{(I)} \\ 0.000kJ/mol -393.5kJ/mol -285.8kJ/mol \end{array}$

Using ΔH°_{f} values, calculate the ΔH° for the following reaction:

$NaOH_{(s)} + HCI_{(g)} \rightarrow NaCI_{(s)} + H_2O_{(l)}$

-425.6kJ/mol -92.30kJ/mol -411.2kJ/mol -285.8kJ/mol

Enthalpy of Combustion:

What is the reaction to produce $C_6H_{12}O_6$?

 $6 \text{ CO}_2 + 6 \text{ H}_2\text{O} \rightarrow 6 \text{ O}_2 + \text{C}_6\text{H}_{12}\text{O}_6$

Where does this naturally occur? How do we measure it?

In plant chloroplasts; it is not easy to measure.

Enthalpy of Combustion:

$C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O_2$

For complex organics, such as $C_6H_{12}O_6$, it is difficult to directly measure its formation. Instead, the compound is combusted and the products analyzed to determine ΔH°_{f} for the original compound.

Enthalpy of Combustion:

$\Delta H^{\circ}{}_{c}$

standard heat of combustion – the ΔH° for the combustion of one mole of compound

Ex. $CH_3OH_{(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(I)}$

 $\Delta H^{\circ}_{c} = -727 kJ$

Enthalpy of Combustion:

 $C_2H_{4(g)} + 3 O_{2(g)} \rightarrow 2 CO_{2(g)} + 2 H_2O_{(I)} \Delta H^{\circ}_{c} = -1386 \text{ kJ}$

Calculate the ΔH°_{f} for $C_{2}H_{4}$.

Can't simply reverse this equation.

Calculate the ΔH°_{f} for $C_{2}H_{4}$.

C₂H_{4(g)} + 3 O_{2(g)} → 2 CO_{2(g)} + 2 H₂O_(l) ΔH°_{c} = -1386 kJ × 0.000kJ -393.5kJ -285.8kJ

Enthalpy of Combustion:

 $\begin{array}{c} C_{2}H_{4(g)} + 3 \ O_{2(g)} \neq 2 \ CO_{2(g)} + 2 \ H_{2}O_{(l)} & \Delta H^{\circ}{}_{c} = -1386 \ \text{kJ} \\ & \text{Calculate the } \Delta H^{\circ}{}_{f} \ \text{for } C_{2}H_{4}. \\ \hline 2C_{(s)} + 2H_{2(g)} \neq C_{2}H_{4(g)} & \Delta H_{f}^{\circ} = ? \\ \hline 1 \ 2 \ CO_{2(g)} + 2 \ H_{2}O_{(l)} \neq C_{2}H_{4(g)} + 3 \ O_{2(g)} & \Delta H^{\circ} = +1386 \ \text{kJ} \\ \hline 2 & C_{(s)} + O_{2(g)} \neq CO_{2(g)} & \Delta H^{\circ} = -393.5 \ \text{kJ} \\ \hline 3 & H_{2(g)} + 1/2O_{2(g)} \neq H_{2}O_{(l)} & \Delta H^{\circ} = -285.8 \ \text{kJ} \end{array}$

Thermodynamic Properties (at standard states)										
	ΔH _c °	in kJ/mol	ΔGt°i	n kJ/mol	S° in J/mol·K	1				
	concentration of aqueous solutions is 1M									
Substance	ΔH _f °	ΔGt°	S°	Substance	ΔH _f °	ΔGr°	S°			
Ag	0	0	42.7	H ₃ PO ₃	-972	_	-			
AgCl	-127	-110	96.1	H ₃ PO ₄	-1280	-1120	110			
AgCN	-146	-164	83.7	H ₂ S	-20.1	-33.0	206			
AJ.	0	0	28.3	H ₂ SO ₃ (aq)	-614	-538	232			
N2O3	-1670	-1580	51.0	H ₂ SO ₄ (aq)	-908	-742	17.2			
BaCl ₂ (aq)	-873	-823	121	HgCl ₂	-230	-177	-			
BaSO4	-1470	-1350	132	Hg ₂ Cl ₂	-265	-211	196			
Ве	0	0	9.54	Hg ₂ SO ₄	-742	-624	201			
Be ₃ N ₂	-568	-512		12	0	0	117			
Bi	0	0	56.9	к	0	0	63.6			
BiCl ₃	-379	-319	190	KBr	-392	-379	96.4			
Bi ₂ S ₃	-183	-164	146	KMnO ₄	-813	-714	172			
Br ₂	0	0	152	КОН	-426	—	-			
CH4	-74.8	-50.8	186	LiBr	-350	-	-			
C ₂ H ₄	+52.3	+68.1	219	LIOH	-487	-444	50.2			
C ₂ H ₆	-84.7	-32.9	229	Mn	0	0	32.0			
C4H10	-125	-15.7	310	MnCl ₂ (aq)	-555	-491	38.9			
00	-111	-137	198	Mn(NO ₃) ₂ (aq)	-636	-451	218			
CO2	-393.5	-394.4	214	MnO ₂	-521	-466	53.1			
CS ₂	+87.9	+63.6	151	MnS	-214	-	100			
Ca	0	0	41.6	N ₂	0	0	192			
Ca(OH) ₂	-987	-897	-	NH ₃	-46.2	-16.6	193			
Cl ₂	0	0	223	NH ₄ Br	-270	-175	113			
CoCO ₃	-723	-650	-	NO	+90.4		211			
00	-239	-213	43.9	NO ₂	+33.8	+51.8	240			
2r2O3	-1130	-1050	81.2	Na	0	0	51.0			
SCI(aq)	-415	-371	188	NaBr	-360	_	_			
Cs2SO4(aq)	-1400	-1310	283	NaCl	-411	-384	72.4			
Cul	-67.8	-69.5	96.7	NaNO ₃ (aq)	-447					
CuS	-53.1	-53.7	66.5	NaOH	-427		-			
Cu ₂ S	-79.5	-86.2	121	Na ₂ S(aq)	-437	_				
CuSO.	- 770	-662	113	Na-SO.	-1380	-1270	149			