- As heat (Q) is added, temperature generally increases
- We have shown this by using $\mathbf{Q} = \mathbf{mc} \Delta \mathbf{T}$
- The enthalpy change of a system is related to the change in heat so we can use $\Delta H = mc\Delta T$

- At critical points, heat is added but the temperature does not change because the heat is being used to cause the phase change

These changes have special symbols and values: Enthalpy of melting: ΔH_{melt} Enthalpy of vaporization: ΔH_{vap} Enthalpy of dissolving: ΔH_{sol} So any time a problem involves a phase change, you must take into account this additional energy change.

For example, H_2O has the following values: $\Delta H_{melt} = 6.02 \text{ kJ/mol}$ $\Delta H_{vap} = 40.0 \text{ kJ/mol}$

Notice they are in kJ/mol, meaning you must convert your masses into moles!

Heat Added (each division = 4 kJ)

- ice going from -25 to 0C
 ice melting to water
 water going from 0 to 100
 water vaporizing to steam
 steam going from 100 to 125 C
- $\begin{bmatrix} \Delta H = mc \Delta T \end{bmatrix}$ $\begin{bmatrix} \Delta H_{melt} \end{bmatrix}$ $\begin{bmatrix} \Delta H = mc \Delta T \end{bmatrix}$ $\begin{bmatrix} \Delta H_{vap} \end{bmatrix}$ $\begin{bmatrix} \Delta H = mc \Delta T \end{bmatrix}$

 $\Delta H = mc\Delta T + \Delta H_{melt} + mc\Delta T + \Delta H_{vap} + mc\Delta T$

SCH4U Energy Changes & Rates of Reaction

 How much energy must be lost for 50.0 g of liquid wax at 85.0 °C to cool to room temperature at 25.0 °C?
 (C_{solid wax}= 2.18 J/g °C, m.p. of wax = 62.0 °C, C_{liquid wax}=2.31 J/g °C; M=352.7 g/mol, ΔH_{fusion}=70,500 J/mol)

2. The melting point of $O_{2(s)}$ is -219°C. Determine the amount of thermal energy that must be removed to completely freeze 15.0 mol of $O_{2(l)}$ at this temperature. ($\Delta H_{melt} = 0.44 \text{ kJ/mol}, \Delta H_{vap} = 6.82 \text{ kJ/mol}$)