SCH4U
 Energy Changes \&
 Enthalpy \& Phase Change Rates of Reaction

- As heat (Q) is added, temperature generally increases
- We have shown this by using $\mathbf{Q}=\mathbf{m c \Delta T}$
- The enthalpy change of a system is related to the change in heat so we can use $\Delta \mathrm{H}=\mathrm{mc} \Delta \mathrm{T}$
- At critical points, heat is added but the temperature does not change because the heat is being used to cause the phase change

These changes have special symbols and values:
Enthalpy of melting: $\Delta H_{\text {melt }}$
Enthalpy of vaporization: $\Delta H_{\text {vap }}$
Enthalpy of dissolving: $\Delta H_{\text {sol }}$
So any time a problem involves a phase change, you must take into account this additional energy change.

For example, $\mathrm{H}_{2} \mathrm{O}$ has the following values:
$\Delta H_{\text {melt }}=6.02 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{\text {vap }}=40.0 \mathrm{~kJ} / \mathrm{mol}$

Notice they are in $\mathrm{kJ} / \mathrm{mol}$, meaning you must convert your masses into moles!

You have 50 g of ice at -25C and heat it until you have 50 g of steam at 125C.
Determine the enthalpy change of the reaction.
Heating Curve for $\mathrm{H}_{2} \mathrm{O}$ from $-25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

1) ice going from -25 to $O C$
2) ice melting to water
3) water going from 0 to 100
4) water vaporizing to steam
5) steam going from 100 to 125 C
$\Delta H=m c \Delta T+\Delta H_{\text {melt }}+m c \Delta T+\Delta H_{\text {vap }}+m c \Delta T$
[$\Delta H=m c \Delta T]$
[$\left.\Delta H_{\text {melt }}\right]$
$[\Delta H=m c \Delta T]$
[$\Delta H_{\text {vap }}$]
$[\Delta H=m c \Delta T]$

SCH4U
 Energy Changes \&
 Enthalpy \& Phase Change

1. How much energy must be lost for 50.0 g of liquid wax at $85.0^{\circ} \mathrm{C}$ to cool to room temperature at $25.0^{\circ} \mathrm{C}$?
($\mathrm{C}_{\text {solid wax }}=2.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$, m.p. of $\mathrm{wax}=62.0^{\circ} \mathrm{C}$,
$C_{\text {liquid wax }}=2.31 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C} ; \mathrm{M}=352.7 \mathrm{~g} / \mathrm{mol}$,
$\Delta H_{\text {fusion }}=70,500 \mathrm{~J} / \mathrm{mol}$)
2. The melting point of $\mathrm{O}_{2(s)}$ is $-219^{\circ} \mathrm{C}$. Determine the amount of thermal energy that must be removed to completely freeze 15.0 mol of $\mathrm{O}_{2(1)}$ at this temperature. $\left(\Delta H_{\text {melt }}=0.44 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}_{\text {vap }}=6.82 \mathrm{~kJ} / \mathrm{mol}\right)$
