Strong acid-base titrations

If it takes 54.0 mL of 0.1 M NaOH to neutralize 125.0 mL of an HCl solution. What is the concentration of the HCl?

Strong acid-base titrations

What is the pH of the final solution where 30.0 mL of 0.1 M NaOH is mixed with 18.0 mL of 0.5 M HCI?

What is a buffer?

- A buffer is an aqueous solution which resists pH changes
- A buffer composed of a weak acid and its conjugate base OR a weak base and its conjugate acid

KEY QUESTIONS!

- 1) Why do conjugate acid base pairs matter in buffers?
- 2) Why are buffers made of ONLY weak acid/ bases, and NOT strong?
 - Let's review conjugate acid-base pairs!

Find the conjugate pairs

- $\begin{array}{c} CH_3COOH_{(aq)} \ + \ H_2O_{(l)} \leftrightarrow CH_3COO^-_{(aq)} + H_3O^+_{(aq)} \\ & \text{conjugate base} \end{array}$
- Write the eq'm
- expression:

CH₃COO⁻_(aq) + H₂O_(I) ↔ CH₃COOH_(aq) + OH⁻_(aq) base conjugate acid Write the eq'm expression:

Try $K_a \times K_b$, if it equals K_w then we have a buffer!

Is it a buffer?

$H_2CO_3 + H_2O_{(I)} \leftrightarrow HCO_3^{-}(aq) + H_3O^{+}(aq)$

acid

conjugate base

How do buffers resist changes in pH?

Let's use our acetic acid-acetate example: $CH_3COOH_{(aq)} + H_2O_{(I)} \leftrightarrow CH_3COO^-_{(aq)} + H_3O^+_{(aq)}$

What happens if we add a base (OH⁻)? Normally, the pH would increase.

 $CH_{3}COOH_{(aq)} + OH^{-}_{(aq)} \leftrightarrow CH_{3}COO^{-}_{(aq)} + H_{2}O_{(l)}$

But with a buffer, we have water being formed! So very little change in pH! ***BUFFERING REGION***

Le Châtelier's Principle! CH₃COOH_(aq) +OH⁻_(aq) \leftrightarrow CH₃COO⁻_(aq) + H₂O_(I)

- What happens as we increase $[OH_{(aq)}]$? Equilibrium shifts to the right, increasing $[CH_3COO_{(aq)}]$ & $H_2O_{(I)}$
- If you keep adding base, eventually this reaction will dominate:
- $CH_{3}COO^{-}_{(aq)} + H_{2}O_{(I)} \leftrightarrow CH_{3}COOH_{(aq)} + OH^{-}_{(aq)}$

At this point, the pH will increase dramatically

Titration Graph

Sunday, April 13, 2014

A chemist titrated 25.00mL of 0.1000 mol/L solution of acetic acid, CH₃COOH, with NaOH. Calculate the pH of the solution after the addition of 10.00mL of NaOH.

$NaOH + CH_3COOH < --> H_2O + NaCH_3COO$

$CH_3COOH + H_2O < --> CH_3COO^- + H_3O^+$

C E

Weak base-Strong Acid

100 mL of 0.300M NH₃ is mixed with 180 mL of 0.100M HCI. Find the pH of the solution. $K_b = 1.8 \times 10^{-5}$

$NH_3 + HCI < --> NH_4^+ + CI^-$

$NH_3 + HCI < --> NH_4^+ + CI^-$

$NH_3 + H_2O < --> NH_4^+ + OH^-$

Strong Weak Titrations

 2.0×10^1 mL of 0.20 mol/L NH_{3(aq)} is titrated against 0.20 mol/L HCl_(aq). Calculate the pH at equivalence.