Strong acid-base titrations

If it takes 54.0 mL of 0.1 M NaOH to neutralize 125.0 mL of an HCl solution. What is the concentration of the HCl ?

Strong acid-base titrations

What is the pH of the final solution where 30.0 mL of 0.1 M NaOH is mixed with 18.0 mL of 0.5 M HCl ?

What is a buffer?

- A buffer is an aqueous solution which resists pH changes
- A buffer composed of a weak acid and its conjugate base OR a weak base and its conjugate acid

KEY QUESTIONS!

1) Why do conjugate acid base pairs matter in buffers?
2) Why are buffers made of ONLY weak acid/ bases, and NOT strong?

- Let's review conjugate acid-base pairs!

Find the conjugate pairs

$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$ acid

Write the eq'm expression:
$\mathrm{CH}_{3} \mathrm{COO}_{\text {base }}^{-}{ }_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \underset{\text { conjugate acid }}{\mathrm{CH}_{3} \mathrm{COOH}_{(a q)}}+\mathrm{OH}^{-}($aq $)$ Write the eq'm expression:

$$
\text { Try } \mathbf{K}_{\mathrm{a}} \mathbf{x} \mathbf{K}_{\mathbf{b}},
$$

if it equals K_{w} then we have a buffer!

Is it a buffer?

$\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{HCO}_{3}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$ acid conjugate base

How do buffers resist changes in pH ?

Let's use our acetic acid-acetate example: $\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$ What happens if we add a base $\left(\mathrm{OH}^{-}\right)$? Normally, the pH would increase.

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}_{-(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(1)}
$$

But with a buffer, we have water being formed! So very little change in pH !
\%**BUFFERING REGION***

Le Châtelier's Principle!

$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

What happens as we increase $\left[\mathrm{OH}^{-}{ }_{(\mathrm{aq})}\right]$?
Equilibrium shifts to the right, increasing $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})\right] \& \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

If you keep adding base, eventually this reaction will dominate:
$\mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$ At this point, the pH will increase dramatically

Titration Graph

Weak acid-Strong Base

A chemist titrated 25.00 mL of $0.1000 \mathrm{~mol} / \mathrm{L}$ solution of acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, with NaOH . Calculate the pH of the solution after the addition of 10.00 mL of NaOH .

Weak acid-Strong Base

$\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH}<-->\mathrm{H}_{2} \mathrm{O}+\mathrm{NaCH}_{3} \mathrm{COO}$

Weak acid-Strong Base

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$ <--> $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

I
C
E

Weak acid-Strong Base

Weak base-Strong Acid

100 mL of 0.300 M NH 3 is mixed with 180 mL of 0.100 M HCl . Find the pH of the solution. $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$
$\mathrm{NH}_{3}+\mathrm{HCl}<-->\mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$

Weak acid-Strong Base

$\mathrm{NH}_{3}+\mathrm{HCl}<-->\mathrm{NH}_{4}{ }^{+}+\mathrm{Cl}^{-}$

Weak acid-Strong Base

$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}<-->\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

Strong Weak Titrations

$2.0 \times 10^{1} \mathrm{~mL}$ of $0.20 \mathrm{~mol} / \mathrm{L} \mathrm{NH}_{3(\mathrm{aq)}}$ is titrated against $0.20 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}_{\text {(aq) }}$. Calculate the pH at equivalence.

