ASSUMPTIONS WITH EQUILIBRIUM

Example \#1

At $2000^{\circ} \mathrm{C}, \mathrm{K}_{\text {eq }}$ is 6.40×10^{-7} for the decomposition of CO_{2} into CO and O_{2}. Calculate all equilibrium concentrations if 0.250 mol of CO_{2} is placed in a 1.00 L container at the given temperature.

ASSUMPTIONS WITH EQUILTBRIUM

Example \# $1 \quad 2 \mathrm{CO}_{2(g)} \Leftrightarrow 2 \mathrm{CO}_{(g)}+\mathrm{O}_{2(g)}$

I
C
E

ASSUMPTIONS WITH EQUILTBRIUM

Look at the $\mathrm{K}_{\text {eq }}$ (which is 0.000000640)

ASSUMPTIONS WITH EQUILTBRIUM

Example \#1
$2 \mathrm{CO}_{2(g)} \Leftrightarrow 2 \mathrm{CO}_{(9)}+\mathrm{O}_{2(g)}$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{eq}} & =\frac{[\mathrm{CO}]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{CO}_{2}\right]^{2}} \\
6.40 \times 10^{-7} & =\frac{[2 \mathrm{x}]^{2}[\mathrm{x}]}{[0.250-2 \mathrm{x}]^{2}}
\end{aligned}
$$

ASSUMPTIONS WITH EQUILTBRIUM

Example \#1

At $2000^{\circ} \mathrm{C}, \mathrm{K}_{\text {eq }}$ is 6.40×10^{-7} for the decomposition of CO_{2} into CO and O_{2}.
Calculate all equilibrium concentrations if
0.250 mol of CO_{2} is placed in a 1.00 L container at the given temperature.

How do I know if I can make an assumption?
You can also divide the initial concentration by $\mathbf{k}_{\text {eq }}$. If the answer is AT LEAST 100, you can use the assumption!
$0.250 / 6.40 \times 10^{-7}=3.91 \times 10^{5}$, which is MUCH bigger thar 100
0.247 and 0.250 are very close

The difference is 1.2%. As long as the difference is less than 5%, you can use the assumption.

Questions involving a lot of polynomial expansion is a good indication that an assumption should be used.

ASSUMPTIONS WITH EQUILTBRIUM

In a study of halogen bond strengths, 0.50 mol of I_{2} was heated in a 2.5 L vessel, and the following reaction occurred: $\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{I}(\mathrm{g})$

Calculate [I_{2}] and [I] at equilibrium at 600 K where $\mathrm{K}_{\text {eq }}=2.94 \times 10^{-10}$

