Tuesday, March 18, 2014

Example #1

At 2000°C, K_{eq} is 6.40 x 10⁻⁷ for the decomposition of CO₂ into CO and O₂. Calculate all equilibrium concentrations if 0.250 mol of CO₂ is placed in a 1.00 L container at the given temperature.

Example #1 $2 CO_{2(g)} \Leftrightarrow 2 CO_{(g)} + O_{2(g)}$ ICE

Look at the K_{eq} (which is 0.00000640)

Example #1

 $2CO_{2(g)} \Leftrightarrow 2CO_{(g)} + O_{2(g)}$

$$K_{eq} = \frac{[CO]^2[O_2]}{[CO_2]^2}$$

5.40x10⁻⁷ = $\frac{[2x]^2[x]}{[0.250-2x]^2}$

Example #1

At 2000°C, K_{eq} is 6.40 x 10⁻⁷ for the decomposition of CO₂ into CO and O₂.

Calculate all equilibrium concentrations if

0.250 mol of CO_2 is placed in a 1.00 L container at the given temperature.

How do I know if I can make an assumption?

You can also divide the initial concentration by k_{eq} . If the answer is AT LEAST 100, you can use the assumption!

 $0.250/6.40 \times 10^{-7} = 3.91 \times 10^{5}$, which is MUCH bigger than 100

0.247 and 0.250 are very close

The difference is 1.2%. As long as the difference is less than 5%, you can use the assumption.

Questions involving a lot of polynomial expansion is a good indication that an assumption should be used.

- In a study of halogen bond strengths, 0.50 mol of I₂ was heated in a 2.5L vessel, and the following reaction occurred: I₂(g) \leftrightarrow 2I(g)
- Calculate [I₂] and [I] at equilibrium at 600K where $K_{eq} = 2.94 \times 10^{-10}$