SCH4U
 Electrochemistry
 10.3 Balancing Half Reactions

Steps to balancing redox equations. NO shortcuts. This format must be followed in the given sequence.

Step 1 Write separate equations for the oxidation and reduction halfreactions.

Step 2 For each half reaction:
a) Balance all the elements except hydrogen and oxygen
b) Balance oxygen using $\mathrm{H}_{2} \mathrm{O}$.
c) Balance hydrogen using H^{+}.
d) Balance the charge using electrons.

Step 3 If necessary, multiply one or both balanced half-reactions by an integer to equalize the number of electrons transferred in the two half-reactions. \# electrons lost $=$ \# electrons gained.

Step 4 Add the half-reactions, and cancel identical species.

Step 5 Check that the elements and charges are balanced.
If the redox reaction is occurring in a basic solution continue on.
Step 6 To both sides of the equation obtained above, add a number of OH^{-} ions that is equal to the number of H^{+}ions. (one wants to eliminate H^{+}by forming water.)

Step 7 Form $\mathrm{H}_{2} \mathrm{O}$ on the side containing H^{+}and OH^{-}ions, and eliminate the number of $\mathrm{H}_{2} \mathrm{O}$ molecules that appear on both sides of the equation.

Step 8 Check that the elements and charges are balanced.

Let's try an example:

In acidic solution, balance the equation $\mathrm{ClO}_{4}^{-}+\mathrm{NO}_{2}-->\mathrm{Cl}^{-}+\mathrm{NO}_{3}{ }^{-}$ Assign oxidation numbers.

Is it a redox?
Which was Oxidized?

Which was Reduced?

Write the half reactions separately.

OXIDIZED
REDUCED

Balance other atoms

Balance with $\mathrm{H}_{2} \mathrm{O}$

Balance with H^{+}

Balance with e^{-}
$8 \mathrm{NO}_{2}+\mathrm{ClO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}-->8 \mathrm{NO}_{3}^{-}+8 \mathrm{H}^{+}+\mathrm{Cl}^{-}$

REDOX WORKSHEET

Balance the following redox reactions. Assume all are in acidic solutions unless otherwise indicated.

1. $\mathrm{NO}_{3}{ }^{-}+\mathrm{Cu} \rightarrow \mathrm{NO}_{2}+\mathrm{Cu}^{+}$
2. $\mathrm{IO}_{3}{ }^{-}+\mathrm{AsO}_{3}{ }^{3-} \rightarrow \mathrm{I}-+\mathrm{AsO}_{4}{ }^{3-}$
3. $\mathrm{SO}_{4}{ }^{2-}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{SO}_{2}$
4. $\mathrm{NO}_{3}{ }^{1-}+\mathrm{Zn} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{Zn}^{2+}$
5. $\mathrm{Cr}^{3+}+\mathrm{BiO}_{3}{ }^{1-} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{Bi}^{3+}$
6. $\quad \mathrm{I}_{2}+\mathrm{OCl}^{1-} \rightarrow \mathrm{IO}_{3}{ }^{1-}+\mathrm{Cl}^{1-}$
7. $\mathrm{Mn}^{2}++\mathrm{BiO}_{3}{ }^{1-} \rightarrow \mathrm{MnO}_{4}{ }^{1-}+\mathrm{Bi}^{3}+$
8. $\mathrm{MnO}_{4}{ }^{1-}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow \mathrm{CO}_{2}+\mathrm{MnO}_{2} \quad$ (basic)
9. $\mathrm{ClO}_{3}{ }^{1-}+\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{NO}+\mathrm{Cl}^{1-}$
10. $\mathrm{NiO}_{2}+\mathrm{Mn}(\mathrm{OH})_{2} \rightarrow \mathrm{Mn}_{2} \mathrm{O}_{3}+\mathrm{Ni}(\mathrm{OH})_{2}$
11. $\mathrm{SO}_{3}{ }^{2-}+\mathrm{CrO}_{4}{ }^{2-} \rightarrow \mathrm{SO}_{4}{ }^{2-}+\mathrm{CrO}_{2}{ }^{1-}$ (basic)
12. $\mathrm{Au}+\mathrm{CN}^{1-}+\mathrm{O}_{2} \rightarrow \mathrm{Au}(\mathrm{CN})_{4}{ }^{1-}+\mathrm{OH}^{1-}$ (basic)
