SNC1D7 Current Electricity

Static electricity review...

- Static electricity is electrons gathered in one place (surface of object) and randomly move in all direction
- What do we use electricity for?

Friday, March 2, 2012

hmm

- Electrons in the i-pod are used to make music.
- Electrons in a light bulb are used to make light.
- But...
- Why would it be challenging to use static electricity in electrical devices, such as your i-pod, TV, computers, etc?

- We can control electron movement to power i-phones, light bulbs, and other household appliances.
- <u>But what does electrons flow</u> <u>through?</u>
- And, what causes them to move?
- These are our focus questions as we work through the rest of the unit.

Homework...

- You were asked to learn about conductors and insulators for homework.
- Why do you think she asked you do that?

- **Conductors:** are materials that allow the movement of electrons. Examples: iron, copper, silver.
- Insulators: are materials that prevent the movement of electrons. Examples: plastic, wood.

Practical Implications?

Circuits

- Electrons flow through conductors in a controlled path known as circuits.
- Circuit in Latin is, circuitus, which simply means, "going around."
- Electron flow is known as <u>current</u>

• Activity:

- -6 stations around our lab benches.
- Your task will be to get into groups of 4, and attempt to light up the bulb using only the materials given.
- Were you successful? Explain your reasoning.
- What else might you need? Brainstorm.
- Move to the next station (clockwise).
- Group 6: Study figure 10.1 in pg 324 of your textbook

- <u>To be handed in after individually.</u>

- Group 1: light bulb; 2 cell battery; 1 switch, 1 wire
- Group 2: light bulb; 2 cell battery; 2 wires
- Group 3: light bulb; 4 connecting wires; switch
- **Group 4:** light bulb; 2 cell battery; 2 connecting wire; switch
- Group 5: light bulb; 2 cell battery; 3 connecting wires, switch
- **Group 6:** Study figure 10.1 in pg 324 of your textbook

Drawing Circuits

- What is required?
- What are their symbols, names and functions?
- Handout given. Follow overhead.

Practice

- Most groups were successful at station 5.
- Let us try to provide a schematic representation of the circuit at station 5.
- 1st step is to determine the circuit diagram symbols for each part (aka device, components)
- **2nd step: Begin with** the battery (cell), the source of electron flow
- 3rd step is to draw the switch
- 4th step is to draw the load (lamp)
- 5th step: connect the devices with a wire.

True or False: secret vote of science

 Electrons flow freely in an open circuit; whereas in a closed circuit they do not, and hence no electricity.

Open and Closed circuits

 Misconception: electrons flow through a open circuit, instead of a closed circuit

Open and closed circuits cont'd...

- In an open circuit, the circuit is not complete, instead it is broken
- In a closed circuit, the path is uninterrupted.

Homework

- Why do power sockets have 2 pins?
- Come up with an analogy that cures the misconception of open and closed circuits. <u>To</u> <u>be presented to the</u> <u>class</u>.

2 Types of circuits: 1)Series 2)Parallel circuits

Magic ball activity

- 1. Make a circle around me. Be in contact with the person next to you.
 - What happened to the magic ball when one hand was open (open circuit).
- 2. Make a figure of 8 around me. What did we see in the magic ball?
 - What happened to the magic ball when one hand was open (open circuit).

Series circuits

• Flow of electrons follow only one path. This is achieved by connecting the loads in a chain, one after another in a continuous loop.

Parallel Circuits

 Electrons can flow more than one way.
 Loads are connected by branches so that there are two or more paths.

- Drawing series circuits
 Draw a series circuit consisting of a lamp, open switch, and 2 cell battery connected by an ideal conductor.
- 1. Draw the symbols of each component given.
- 2. Always begin with the battery (e⁻ source).
- 3. Then we include the switch (which turns the lamp, on or off)
- 4. Then include the lamp.

Practice drawing the following circuits

- Two lamps in series
- Two cells in series
- A closed circuit exists with 2 cells connected in series, then the switch, then two light bulbs connected in series. Show the flow of electrons with an arrow.

Drawing parallel circuits

 Draw a closed circuit with two lamps connected in parallel, with two switches, and a 3 cell battery in series, connected by an ideal conductor.

Practice drawing parallel circuits

- Draw three cells in parallel.
- Draw two resistors in parallel
- The closed circuit consists of two cells in series, connected to a switch, that are connected to three resistors in parallel.

<u>Homework:</u> describe the following circuits in words

Series-parallel

Read pages 325, and 328, and make point form notes

We are looking at a quiz next week, roughly Wednesday/ Thursday/ Friday.

Only on the things that I have covered....Current electricity

- More practice 1. An open circuit exists with a light bulb connected to one dry cell, which is connected to a switch. Show the direction of electron flow with an arrow
- Iight bulbs are connected in parallel. An open circuit exists with a switch and four cells in series. Show direction of electron flow.
- 3. The circuit consists of two cells in parallel connected to a switch, which connects to three light bulbs in parallel. Place a switch where it will control current flow through one of the light bulbs.

Building/drawing circuit activity

- Design your own circuit on paper, in groups of 4/5
- Be creative!
- Then build it
- Focus Question:

– How does the brightness of the light bulbs compare between series and parallel connections?

Your design is to be handed in at the end of class.

More characteristics of series and parallel circuits

Series Circuits

- Electrical energy is shared between loads.
- Brightness of the light bulbs?
- Mainly found in simple devices (eg. Flashlights, toy cars)

Parallel Circuits

- Electrical energy is NOT Shared between loads.
- Brightness of the light bulbs?
- Mainly found in more complex places (eg. House, school)

Riddles

• **Blood** Water

Measuring Current

- Current, we defined, as the flow of electrons.
- But how would you measure this?
- And, why should we care to measure it?

Measure current

- Measuring the rate of electron flow past a given point in a circuit.
- Current is measured in amperes (I) by a device called, ammeter.
- Ammeter must be connected in series with a load when measuring current.

Measuring Current Analogy

- Imagine a waterfall, and you wanted to measure the rate at which water was flowing.
- You would stand near the cliff and count the number of water molecules flowing past that

Measuring the rate of electron flow

- Rate implies a time frame.
- Thus, Current = amount of charge (-) per unit of time
- Charge = Q
- Current = I
- Time = t
- Therefore: I = Q/t