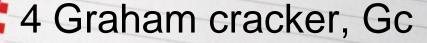
7.1 MOLE RATIOS IN CHEMICAL **EQUATIONS**

WHAT IS A MOLE RATIO?


It is the ratio amounts of the entities in a chemical reaction.

ex.
$$H_{2(g)}$$
 + $O_{2(g)}$ \Longrightarrow $H_2O_{(g)}$ $2H_2O_{(g)}$ + $O_{2(g)}$ \Longrightarrow $2H_2O_{(g)}$ 2 : 1 : 2

The RATIO of the amount (in moles) of one chemical to another in a chemical equation

A Ratio Analogy

- 8 Chocolate chip, Cc
- 2 Marshmallow, Mm

2 s'mores

4 Gc + 8 Cc + 2 Mm → 2 Sm

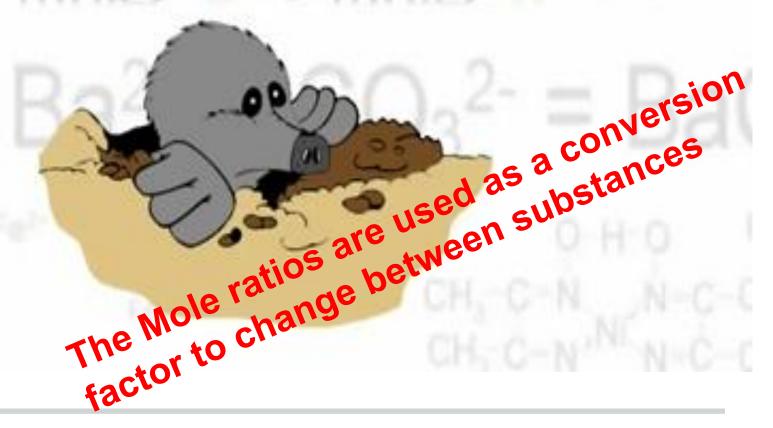
A Ratio Analogy

 $4 Gc + 8 Cc + 2 Mm \rightarrow 2 Sm$

1. If you want to make 1 s'mores, how many cracker, chocolate chip and marshmallow do you need?

2. If you have 50 crackers, how many chocolate chip do you need?

2 Gc -	+ 4 Cc +	- Mm –	→ Sm
Number of Gc entities	Number of Cc entities	Number of Mm entities	Number of Sm entities
2	4	1	1
4	8	2	2
50	100	25	25
2000	4000	1000	1000
$2 \times 6.02 \times 10^{23} = 2 \text{ mol}$	$4 \times 6.02 \times 10^{23} = 4 \text{ mol}$	$1 \times 6.02 \times 10^{23} = 1 \text{ mol}$	$1 \times 6.02 \times 10^{23} = 1 \text{ mol}$


WHAT IS A MOLE RATIO?

ex.
$$2H_{2(g)} + O_{2(g)} \Longrightarrow 2H_2O_{(g)}$$

Changing Moles

moles A to moles B

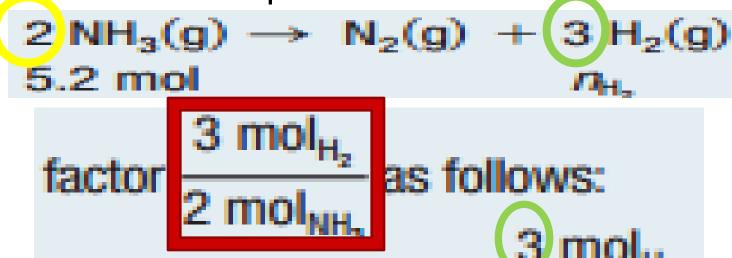
Stoichiometry: Moles to Moles

$$A + B \implies C + D$$

Template Problem:

If # mol of A reacts completely, how many moles of C is produced?

EXAMPLE 1: How many moles of hydrogen gas is produced wher 5.2 mol of ammonia decomposes?


Step 1: Write a balanced chemical equation.

$$2 \text{ NH}_3(g) \rightarrow \text{N}_2(g) + 3 \text{H}_2(g)$$

5.2 mol n_{H_2}

Given: amount of ammonia, $n_{NH_3} = 5.2$ mol Required amount of hydrogen, n_{H_2}

EXAMPLE 1: What amount of hydrogen is produced when 5.2 mol of ammonia decomposes?

Step 2: Convert amount of the given substance to amount of the required substance.

A mole ratio between X:Y tells you the relative amount of X and Y in a reaction. The coefficients (such as 3X and 4Y) come from the balanced chemical equation.

EXAMPLE 2: What amount of oxygen is required to react completely with 6.4 x 10⁻² mol of aluminum to produce aluminum oxide?

Step 1: Write a balanced chemical equation.

4 Al(s) + 3
$$O_2(g) \rightarrow 2 \text{ Al}_2 O_3(s)$$

6.4 × 10⁻² mol n_{0_2}
Given: $n_{Al} = 6.4 \times 10^{-2}$ mol Required amount of oxygen, n_{0_2}

EXAMPLE 2: What amount of oxygen is required to react completely with 6.4 x 10⁻² mol of aluminum to produce aluminum oxide?

Step 2: Find the appropriate mole ratio and set up an equation. Then solve for x.

4 AI(s) +
$$30_2(g) \rightarrow 2 \text{ AI}_20_3(s)$$

6.4 × 10⁻² mol n_{0_2}

$$n_{0_2} = 6.4 \times 10^{-2} \, \text{met}_{Al} \times \frac{3 \, \text{mol}_{0_2}}{4 \, \text{met}_{Al}} \times \frac{10^{-2} \, \text{mol}_{0_2}}{4 \, \text{met}_{Al}} \times \frac{10^{-2} \, \text{mol}_{0_2}}{4 \, \text{met}_{Al}}$$

Statement: 4.8×10^{-2} mol of oxygen is required to react completely with 6.4×10^{-2} mol of aluminum.

HOMEWORK:

Mole :mole ratio worksheet
Page 298 # 1-10

http://www.mynelson.com/mynelson/webapp/staticcont ent/html/OpenLink.html?linkid=1128171&levelID=39263 7&accessURL=http://k12resources.nelson.com/science /9780176529468/instructor