AGENDA

- Introduce the three types of stoichiometry problems
- Practice with Mass to mass stoichiometry problems

Learning Goal: Calculate mass to mass stoichiometry problems

Review

Mole: Mole ratio

Moles of substance A to moles of substance B

Mole - Mole Conversions

When $\mathrm{N}_{2} \mathrm{O}_{5}$ is heated, it decomposes:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Moles
of A

Moles
of B
a. How many moles of NO_{2} can be produced from 4.3 moles of $\mathrm{N}_{2} \mathrm{O}_{5}$?

$$
\begin{aligned}
& 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \\
& 4.3 \mathrm{~mol} \quad ? \mathrm{~mol} \text { Units match }
\end{aligned}
$$

b. How many moles of O_{2} can be produced from 4.3 moles of $\mathrm{N}_{2} \mathrm{O}_{5}$?

$4.3 \mathrm{moln}_{2} \mathrm{O}_{5}$	$1 \mathrm{~mol} \mathrm{O}_{2}$		
	$2 \mathrm{mul} \mathrm{N}_{2} \mathrm{O}_{5}$	3	BACK

How many copper is needed to react with 3.5 moles of silver nitrate?

STOICHIOMETRY

the study of the mass and amount relationships between reactants and products in a chemical reaction.

3 types of

Stoichiometry problems

1. Moles to Moles (1 step)
2. Moles to Mass / Mass to Moles (1 step)
3. Mass to Mass (3 steps)

Substance given
Substance asked for

Moles to Mass

$$
A+B \rightarrow C+D
$$

Small quantity to big quantity

Calculate the mass of \# mol of substance

 A.

Substance given

Molar mass Triangle

Number of moles

Moles to Mass

Moles (mol) $\rightarrow x$ molar mass \rightarrow mass (g)

Calculate the mass of 0.900 mol of NH 3

Given
$\mathrm{N}=0.900 \mathrm{~mol}$

> Calculate:
> $\mathrm{n}=\mathrm{m} / \mathrm{M}$
> $\mathrm{m}=17.04 \mathrm{~g} / \mathrm{mol} \times 0.900 \mathrm{~mol}$
> $\mathrm{~m}=15.336 \mathrm{~g}$

The mass of 0.99 mol of carbon dioxide is 15.336 g

Mass to Moles

Grams \rightarrow Moles
(big quantity to small quantity)
How many moles of A are in grams of A ?

Substance given

Mass to Moles

Mass $(\mathrm{g}) \rightarrow /$ molar mass \rightarrow mol

How many moles of oxygen are in 5 g of 0 ?

Given:
$M=5 \mathrm{~g}$
$\mathrm{M}=16.00 \mathrm{~g} / 16 \mathrm{~mol}$

Calculate:

$\mathrm{n}=\mathrm{m} / \mathrm{M}$
$\mathrm{n}=5 / 16.00$
$\mathrm{n}=0.3125 \mathrm{~mol}$

Molar mass Triangle

Cover up the letter you are solving to get the correct equation:

$$
\mathrm{M}=\mathrm{m} / \mathrm{n} \quad \mathrm{n}=\mathrm{m} / \mathrm{M} \quad \mathrm{~m}=\mathrm{M} \times \mathrm{n}
$$

1 mole $=6.2 x 1023$ atoms/molecule entities

Mass to Mass
 Grams to Grams

Stoichiometry: mass to mass problems

Mass Stoichiometry.mp4

1) Balance the equation
2) Write down the given information
3) Convert to moles
4) Find the mole ratio
5) Convert to mass

An automobile airbag is inflated with nitrogen produced from the decomposition of sodium azide, NaN_{3} (Figure 4):

The mass of nitrogen in a fullv inflated airbag is 87.5 g . What mass o sodium azide is required to produce this mass of nitrogen?

Nitrogen (N_{2})

Substance asked for
Sodium azide (NaN_{3})

STEP 2: mass of \mathbf{A} to moles of A

$$
\begin{gathered}
\mathrm{B} \\
2 \mathrm{NaN}_{3}(\mathrm{~S}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g}) \\
\begin{array}{|c}
\begin{array}{c}
\text { Grams } \\
\text { of } \mathbf{A}
\end{array} \\
\hline \begin{array}{l}
\text { Moles } \\
\text { of } \mathbf{A}
\end{array}
\end{array} \Rightarrow \begin{array}{c}
\text { Moles } \\
\text { of } \mathbf{B}
\end{array}=-\begin{array}{c}
\text { Grams } \\
\text { of } \mathbf{B}
\end{array} \\
\mathrm{A} n_{\mathrm{N}_{2}}=87.5 \mathrm{~g}
\end{gathered} \frac{1 \mathrm{~mol}_{\mathrm{N}_{2}}}{28.02 \mathrm{~g}}
$$

STEP 3: moles of A to moles of B

B
 A

$2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$

$$
\begin{aligned}
\mathrm{B} \quad n_{\mathrm{WaN}_{3}} & =3.1228 \mathrm{mot}_{\mathrm{N}_{2}} \times \frac{2 \mathrm{~mol}_{\mathrm{NaN}_{3}}}{3 \mathrm{mot}_{\mathrm{N}_{2}}} \\
n_{\mathrm{WaN}_{3}} & =2.0819 \mathrm{~mol}
\end{aligned}
$$

STEP 4: moles of B to mass of B

 $2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$

Grams of A	$\Rightarrow \begin{gathered} \text { Moles } \\ \text { of } A \end{gathered}$	$\begin{array}{c\|c} \text { Moles } \\ \text { of B } \end{array} \Rightarrow \begin{gathered} \text { Grams } \\ \text { of B } \end{gathered}$

$$
\begin{aligned}
\mathrm{B} m_{\mathrm{NaN}_{3}} & =\left(2.0819 \text { mot }_{\text {Nan }_{3}}\right)\left(\frac{65.02 \mathrm{~g}}{1 \text { mot }_{\text {NaN }_{3}}}\right) \\
m_{\mathrm{NaN}_{3}} & =135 \mathrm{~g}
\end{aligned}
$$

Summarizes the steps in the problem

1) Balance the equation

2) Write down the given information
3) Convert to moles
4) Find the mole ratio
5) Convert to mass

Why can't we just throw in random amounts of reactants and react them together?

Stoichiometric Amounts:

Predicted amount of reactant, relative to another reactant, that will react according to the balanced equation.

HOMEWORK:

1. FINISH in class

 worksheet2. TRY Mass-Mass problem set Q 1-3
3. REMINDER: QUIZ next THUR(massmass stoichiometry)

STILL CONFUSED?
LOOK AT sample problems MGH Pg. 301-303

ANATOM SAV TOMNOTE:

