Limiting Reagent	
Excess Reagent	

Tutorial 1: Solving LR problems involving moles
EXAMPLE 1: Determine the amount of titanium metal produced when 2.8 mol of titanium (IV) chloride reacts with 5.4 mol of magnesium.

STEP 1: Write a balanced chemical equation with known and unknowns.
STEP 2: Find which reactant is the LR by using moles of one reactant to solve for the other
STEP 3: Use the limiting reagent to find the number of moles of the required substance

Balance Equation: Mole ratio\quad		+		\rightarrow		
Mass given						
Molar mass						
Moles we						
HAVE						

Which chemical is the limiting reactant?

Tutorial 2: Solving LR problems involving Masses

EXAMPLE 2: Methanol, CH 3 OH , is made by combining carbon monoxide and oxygen. What mass of $\mathrm{CH}_{3} \mathrm{OH}$ is produced from 9.80 g of CO and 1.30 g of H_{2} ?

STEP 1: Write out the balanced chemical equation as well as known's and unknowns underneath.
STEP 2: Convert the mass of both substances to moles under "moles we HAVE".
STEP 3: Using "moles we HAVE" to find "moles we NEED" and compare these two values to determine the LR
STEP 4: Use LR from "moles we HAVE" to find the moles of required substance using mole ratio
STEP 5: Convert moles of required substance to mass of required substance.

Balance Equation:		+		\rightarrow	
Mole ratio					
Mass given					
Molar mass					
Moles we HAVE					

Which chemical is the limiting reactant?

What mass of methanol will be formed?

EXAMPLE 3: In one reaction 100 g of nitrogen gas, N_{2} reacts with 10 g of hydrogen gas, H_{2}. Which reaction will limit the amount of ammonia that can be produced

STEP 1: Write out the balanced chemical equation as well as known's and unknowns underneath.
STEP 2: Convert the mass of both substances to moles under "moles we HAVE".
STEP 3: Using "moles we HAVE" to find "moles we NEED" and compare these two values to determine the LR
STEP 4: Use LR from "moles we HAVE" to find the moles of required substance using mole ratio
STEP 5: Convert moles of required substance to mass of required substance.

Balance Equation:		+		\rightarrow	
Mole ratio					
Mass given					
Molar mass					
Moles we HAVE					

Which chemical is the limiting reactant?

What mass of ammonia will be formed?

EXAMPLE 4: Bromine can be prepared by adding chlorine to an aqueous solution of sodium bromide. How many grams of bromine are formed if 25 g of sodium bromide and 25 g of chlorine are reacted?

Which chemical is the limiting reactant?
What mass of zinc sulphide will be formed?
What is the mass of the leftover excess reactant? \qquad

Balance equation:		+		\rightarrow		
Mole ratio						
Mass given						
Molar mass						
Moles we						
HAVE						
Moles we						

