
THEORETICAL VS. ACTUAL YIELD

THEORETICAL VS. ACTUAL YIELD		
THEORETICAL yield		

Stoichiometric calculations allow us to calculate the amounts of reactants required or the amounts of products generated from a chemical reaction. Usually, the actual yield of the reaction is less than the theoretical yield. This is due to: \qquad .
Hence the amount of product recovered is often less than whould be predicted from stoichiometric calculations.

Percentage yield is calculated as follows: \quad Percentage Yield $=\underset{\text { theoretical yield }}{\text { actual yield }} \times 100 \%$

EXAMPLE 1: Methanol, $\mathrm{CH}_{3} \mathrm{OH}$, can be made in a synthesis reaction using carbon dioxide and hydrogen. 20.0 g of H_{2} was reacted with excess CO_{2} to yield 102.0 g of methanol. What is the percentage yield of this reaction?

STEP 1: Write out the balanced chemical equation and knowns and unknowns from the question.

STEP 2: convert mass of reactants to moles of reactants

STEP 3: Find the LR first and/or convert moles of LR to moles of required product

STEP 4: Convert moles of product to mass of product

STEP 5: Calculate the percentage yield of the product

Percentage Yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%$

EXAMPLE 2: When 30.0 g of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and 65.0 g of bromine are reacted together as shown below 56.7 g of bromobenzene $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}\right)$ is formed. What is the percent yield of this reaction?

