

Quantitative

Chemistry

Stoichiometry: Mass to Mass

Review: balancing equation, how to convert mass to moles and moles to moles(mole ratio)

Definitions:

Stoichiometry:

Stochiometric amounts:

3 types of stoichiometry problems			
$A + B \rightarrow C + D$			
Moles to Mass	Moles to Moles	Mass to Mass	
(moles of A to grams of A)	(moles of A to moles of B)	(mass of A to mass of B)	
Moles of A Grams of A	Moles of A of B	Grams of A of B of B of B	
Eg. Calculate the mass of 0.900 mol of NH3?	$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$	$CO_{2(g)} + 2 \operatorname{LiOH}_{(s)} \rightarrow \operatorname{Li}_2 CO_{3(aq)} + 2H_2O_{(l)}$	
	Eg. How many moles of NO ₂ can be produced from 4.3 moles of N ₂ O ₅ ?	Eg. Calculate the mass of lithium hydroxide required to react with mass of 8.80 x 10 ² g of carbon dioxide?	
Mass to Moles (grams of A to moles of A) Grams of A Moles of A Eg. How many moles of oxygen are in 5g of O?			

Grams of A Moles of B Grams of B Grams of B Grams of B Grams of B Grams of B CO ₂ EXAMPLE 1: Determine the mass of lithium hydroxide required to react with 8.8 x 10^2 g of CO ₂		
STEP 1	Write the balanced equation for the reaction, listing the given value(s), required value(s), and molar masses below the substance being considered in the problem.	
STEP 2	Convert mass of given substance(s) to moles of given substance. mass of A to moles of A	
STEP 3	Convert moles of substance A to moles of substance B: multiply the moles of the given substance by the suitable conversion factor derived from the mole ratio in the balanced equation. moles of A to moles of B	
STEP 4	Convert moles of required substance to mass of required substance. moles of B to mass of B	

	Grams of A of A of B of B
EXAMPLE 2: Ar	n airbag is inflated with nitrogen produced from the decomposition of sodium azide, NaN ₃ . The
mass of N_2 in	a fully inflated airbag is 87.5g. What mass of NaN ₃ is required to produce this mass of N ₂ ?
STEP 1	Write the balanced equation for the reaction, listing the given value(s), required value(s), and the corresponding molar masses.
STEP 2	Convert mass of given substance(s) to moles of given substance. mass of A to moles of A
STEP 3	Convert moles of substance A to moles of substance B: multiply the moles of the given substance by the
	suitable conversion factor derived from the mole ratio in the balanced equation. moles of A to moles of B
STEP 4	Convert moles of required substance to mass of required substance. <u>moles of B to mass of B</u>