SCH3U

Quantitative Stoichiometry: Mass to Mass
Chemistry
Review: balancing equation, how to convert mass to moles and moles to moles(mole ratio)

Definitions:

Stoichiometry:

Stochiometric amounts:

3 types of stoichiometry problems$A+B \rightarrow C+D$		
Moles to Mass (moles of A to grams of A) $\left.\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { Moles } \\ \text { of } \boldsymbol{A} \end{array}\right]$	Moles to Moles (moles of A to moles of B)	Mass to Mass (mass of A to mass of B)
Eg. Calculate the mass of 0.900 mol of NH3?	$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$ Eg. How many moles of NO_{2} can be produced from 4.3 moles of $\mathrm{N}_{2} \mathrm{O}_{5}$?	$\mathrm{CO}_{2(g)}+2 \mathrm{LiOH}_{(s)} \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3(a q)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}$ Eg. Calculate the mass of lithium hydroxide required to react with mass of $8.80 \times 10^{2} \mathrm{~g}$ of carbon dioxide?
Mass to Moles (grams of A to moles of A) $\begin{gathered} \text { Grams } \begin{array}{c} \text { Moles } \\ \text { of } A \end{array} \\ \text { of } \end{gathered}$		
Eg. How many moles of oxygen are in 5 g of O ?		

Grams of $A$$\Rightarrow \begin{gathered}\text { Moles } \\ \text { of } A\end{gathered} \Rightarrow \begin{gathered}\text { Moles } \\ \text { of B }\end{gathered} \Rightarrow \begin{gathered}\text { Grams } \\ \text { of B }\end{gathered}$

EXAMPLE 1: Determine the mass of lithium hydroxide required to react with $8.8 \times 10^{2} \mathrm{~g}$ of CO_{2}

STEP 1	Write the balanced equation for the reaction, listing the given value(s), required value(s), and molar masses below the substance being considered in the problem.
STEP 2	Convert mass of given substance(s) to moles of given substance. mass of A to moles of A
STEP 3	Convert moles of substance A to moles of substance B: multiply the moles of the given substance by the suitable conversion factor derived from the mole ratio in the balanced equation. moles of A to moles of B

STEP 4	Convert moles of required substance to mass of required substance. moles of B to mass of B

	$\begin{gathered} \text { Grams } \\ \text { of } \mathbf{A} \end{gathered}=\left\{\begin{array}{c} \text { Moles } \\ \text { of } \mathbf{A} \end{array} \Rightarrow \begin{array}{c} \text { Moles } \\ \text { of } \mathbf{B} \end{array} \Rightarrow \begin{array}{c} \text { Grams } \\ \text { of } \mathbf{B} \end{array}\right.$
EXAMPLE 2: An airbag is inflated with nitrogen produced from the decomposition of sodium azide, NaN_{3}. The mass of N_{2} in a fully inflated airbag is 87.5 g . What mass of NaN_{3} is required to produce this mass of N_{2} ?	
STEP 1	Write the balanced equation for the reaction, listing the given value(s), required value(s), and the corresponding molar masses.
STEP 2	Convert mass of given substance(s) to moles of given substance. mass of A to moles of A
STEP 3	Convert moles of substance A to moles of substance B : multiply the moles of the given substance by the suitable conversion factor derived from the mole ratio in the balanced equation. moles of A to moles of B
STEP 4	Convert moles of required substance to mass of required substance. moles of B to mass of B

