${ }_{c}^{\text {sctanu }}$ Stoichiometry - Mole: Mole Ratio Chemistry

Before we begin, it is important that you review nomenclature and balancing equations!

Balance the following equation:

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \text { The mole ratio is: }
$$

For every ___ mol of hydrogen, we get ___ mol of water.
For every ___ mol of oxygen, we get ___ mol of water.
*** This MUST be in terms of moles! ***
Nitrogen gas reacts with hydrogen gas to produce ammonia. Write a balanced equation:

$$
\mathrm{N}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \quad \mathrm{NH}_{3(\mathrm{~g})} \quad \text { The mole ratio is: }
$$

If 2.0 mol of nitrogen reacts with sufficient hydrogen, how much ammonia will be produced?

If 6.0 mol of hydrogen reacts with sufficient nitrogen, how much ammonia will be produced?

Suppose you want to produce 2.75 mol of ammonia. How many moles of nitrogen are needed?

