SCH3U

Relating molar mass, the mole and mass

So far...

- We have learned that the mole is a unit chemists use because the atom is so tiny
- I mole $=6.02 \times 10^{23}$ particles or atoms
- $N=n \times N_{A}$
$\mathrm{n}=\mathrm{N} / \mathrm{N}_{\mathrm{A}}$

Molar Mass

- But we can't measure moles directly! There is no "scale" that we can use.
- So we need some way to convert moles into mass, which we can measure.
- The mass of I mole of a substance is called the molar mass
- Unit is $\mathrm{g} / \mathrm{mol}$

Molar Mass of Molecules and Compounds

 Mass in grams of 1 mole equal numerically to the sum of the atomic masses ie) CaCl_{2}1 mole Ca x $40.1 \mathrm{~g} / \mathrm{mol}$

+ 2 moles Cl x $35.5 \mathrm{~g} / \mathrm{mol}=111.1 \mathrm{~g} / \mathrm{mol} \mathrm{CaCl}_{2}$

1 mole of $\mathrm{CaCl}_{2}=111.1 \mathrm{~g}$

Learning Check!

Determine the relative molecular mass of the following molecules.
a Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
b Methane $\left(\mathrm{CH}_{4}\right)$
c Sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$

Learning Check

Prozac, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}$, is a widely used antidepressant that inhibits the uptake of serotonin by the brain. Find its molar mass.
$309.18 \mathrm{~g} / \mathrm{mol}$

Relating mass, moles \& molar mass

Figure 4.2.1 A formula triangle can be used to make it easier to rearrange this formula.
where $n=$ number of mole (mol)
$m=$ mass (g)
$M=$ molar mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$

$$
\begin{aligned}
& n=m / M \\
& m=n M \\
& M=m / n
\end{aligned}
$$

Converting Moles and Grams

Aluminum is often used for the structure of light-weight bicycle frames. How many grams of Al are in
3.00 moles of AI?
I. Unknown: m=???
2. Given: $\mathbf{n = 3 . 0 0} \mathbf{~ m o l} ; \mathbf{M}=\mathbf{2 7 . 0} \mathbf{~ g} / \mathrm{mol}$
3. Solve: $\mathbf{m}=\mathbf{n}$ * \mathbf{M}
m $=3.00 \mathrm{~mol} * 27.0 \mathrm{~g} / \mathrm{mol}$
$\mathrm{m}=81.0 \mathrm{~g} \mathrm{Al}$

Learning Check!

The artificial sweetener aspartame (Nutra-Sweet) formula $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$ is used to sweeten diet foods, coffee and soft drinks. How many moles of aspartame are present in $\mathbf{2 2 5} \mathbf{g}$ of aspartame?

$$
\begin{aligned}
& \mathrm{n}=\mathrm{m} / \mathrm{M} \\
& \mathrm{n}=225 \mathrm{~g} / 294 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{n}=0.76 \mathrm{~mol}
\end{aligned}
$$

p. 237 in MHR

Practice Problems

41. Calculate the mass of 3.57 mol of vanadium.
42. Calculate the mass of 0.24 mol of carbon dioxide.
43. Calculate the mass of $1.28 \times 10^{-3} \mathrm{~mol}$ of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})$.
44. Calculate the mass of 0.0029 mol of magnesium bromide, $\mathrm{MgBr}_{2}(\mathrm{~s})$, in milligrams.
45. Name each compound, and then calculate its mass. Express this value in scientific notation.
a. $4.5 \times 10^{-3} \mathrm{~mol}$ of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$
b. 29.6 mol of $\mathrm{Pb}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}(\mathrm{~s})$
46. Determine the chemical formula for each compound, and then calculate its mass.
a. 4.9 mol of ammonium nitrate
b. 16.2 mol of iron(III) oxide
47. What is the mass of $1.6 \times 10^{-3} \mathrm{~mol}$ of calcium chloride dihydrate, $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$, in milligrams?
48. A litre of water contains 55.56 mol of water molecules. What is the mass of a litre of water, in kilograms?
49. For each group of three samples, determine the sample with the largest mass.
a. 2.34 mol of bromine, $\mathrm{Br}_{2}(\ell) ; 9.80 \mathrm{~mol}$ of hydrogen sulfide, $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) ; 0.568 \mathrm{~mol}$ of potassium permanganate, $\mathrm{KMnO}_{4}(\mathrm{~s})$
b. 13.7 mol of strontium iodate, $\mathrm{Sr}\left(\mathrm{IO}_{3}\right)_{2}(\mathrm{~s})$; 15.9 mol of gold(III) chloride, $\mathrm{AuCl}_{3}(\mathrm{~s})$; 8.61 mol of bismuth silicate, $\mathrm{Bi}_{2}\left(\mathrm{SiO}_{3}\right)_{3}(\mathrm{~s})$
50. Which has the smallest mass: 0.215 mol of potassium hydrogen sulfite, $\mathrm{KHSO}_{3}(\mathrm{~s}) ; 1.62 \mathrm{~mol}$ of sodium hydrogen sulfite, $\mathrm{NaHSO}_{3}(\mathrm{~s})$; or 0.0182 mol of aluminum iodate, $\mathrm{Al}\left(\mathrm{IO}_{3}\right)_{3}(\mathrm{~s})$?

p. 239 in MHR

Practice Problems

51. Convert 29.5 g of ammonia to the amount in moles.
52. Determine the amount in moles of potassium thiocyanate, $\mathrm{KSCN}(\mathrm{s})$, in 13.5 kg .
53. Determine the amount in moles of sodium dihydrogen phosphate, $\mathrm{NaH}_{2} \mathrm{PO}_{4}(\mathrm{~s})$, in 105 mg .
54. Determine the amount in moles of xenon tetrafluoride, $\mathrm{XeF}_{4}(\mathrm{~s})$, in 22 mg .
55. Write the chemical formula for each compound, and then calculate the amount in moles in each sample.
a. $3.7 \times 10^{-3} \mathrm{~g}$ of silicon dioxide
b. 25.38 g of titanium(IV) nitrate
c. 19.2 mg of indium carbonate
d. 78.1 kg of copper(II) sulfate pentahydrate
56. The characteristic odour of garlic comes from allyl sulfide, $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{~S}(\ell)$. Determine the amount in moles of allyl sulfide in 168 g .
57. Road salt, $\mathrm{CaCl}_{2}(\mathrm{~s})$, is often used on roads in the winter to prevent the build-up of ice. What amount in moles of calcium chloride is in a 20.0 kg bag of road salt?
58. Calculate the amount in moles of trinitrotoluene, $\mathrm{C}_{7} \mathrm{H}_{5}\left(\mathrm{NO}_{2}\right)_{3}(\mathrm{~s})$, an explosive, in $3.45 \times 10^{-3} \mathrm{~g}$.
59. Arrange the following substances in order from largest to smallest amount in moles:

- 865 mg of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ (s)
- 9.82 g of $\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$
- 10.4 g of $\mathrm{AgCl}(\mathrm{s})$

60. Place the following substances in order from smallest to largest amount in moles, given 20.0 g of each:

- glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})$
- barium perchlorate, $\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{~s})$
- $\operatorname{tin}(\mathrm{IV})$ oxide, $\mathrm{SnO}_{2}(\mathrm{~s})$

What about converting Particles into MASS?
 $\mathrm{n}=\mathrm{m} / \mathrm{M}$
 We must go through MOLES!

What is the mass of 4.72×10^{23} formula units of chromium(III) iodide, $\mathrm{CrI}_{3}(\mathrm{~s})$?
Given: $\mathrm{N}=4.72 \times 10^{23}$
Required: $m=$?
Solve: $\mathrm{n}=\mathrm{N} / \mathrm{N}_{\mathrm{A}}$

$$
\begin{aligned}
& \mathrm{n}=4.72 \times 10^{23} / 6.02 \times 10^{23} \\
& \mathrm{n}=0.784 \mathrm{~mol}
\end{aligned}
$$

$$
m=n \times M
$$

$$
m=0.784 \times 432.70
$$

$$
m=339
$$

The mass is 339 g .

Phosphoryl chloride, $\mathrm{POCl}_{3}(\ell)$, is an important compound in the production of flame retardants. How many molecules of phosphoryl chloride are in a 25.2 g sample?

9.9×10^{22} molecules

Plan Your Strategy	Act on Your Strategy
Calculate the amount of phosphoryl chloride from the given mass, using the molar mass.	
Calculate the number of molecules of phosphoryl chloride from the amount in moles, using the Avogadro constant.	

QUIZ
 NEXT CLASS!!!

To prepare:
Try Chapter 5 Self Assessment (p. 254)

Practice Problems

61. Calculate the mass of each sample.
```
        \(1.05 \times 10^{26}\) atoms of neon, \(\mathrm{Ne}(\mathrm{g})\)
        \(2.7 \times 10^{24}\) molecules of phosphorus trichloride,
        \(\mathrm{PCl}_{3}(\ell)\)
```

c. 8.72×10^{21} molecules of karakin, $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{15}(\mathrm{~s})$
d. 6.7×10^{27} formula units of sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{~s})$
62. Determine the number of molecules or formula units in each sample
a. 2.4 g of lead(II) phosphate, $\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$
b. $.62 \times 10^{-3} \mathrm{~g}$ of dinitrogen pentoxide, $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s})$
c. 48 kg of molybdenum(VI) oxide, $\mathrm{MoO}_{3}(\mathrm{~s})$
d. 567 g of $\operatorname{tin}(\mathrm{IV})$ fluoride, $\mathrm{SnF}_{4}(\mathrm{~s})$
63. Sodium hydrogen carbonate, $\mathrm{NaHCO}_{3}(\mathrm{~s})$, is the principal ingredient in many stomach-relief medicines.
a. A teaspoon of a particular brand of stomachrelief medicine contains 6.82×10^{22} formula units of sodium hydrogen carbonate. What mass of sodium hydrogen carbonate is in the teaspoon?
b. The bottle of this stomach-relief medicine contains 350 g of sodium hydrogen carbonate. How many formula units of sodium hydrogen carbonate are in the bottle?
64. Riboflavin, $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{6}(\mathrm{~s})$, is an important vitamin in the metabolism of fats, carbohydrates, and proteins in your body.
a. The current recommended dietary allowance (RDA) of riboflavin for adult men is $1.3 \mathrm{mg} /$ day. How many riboflavin molecules are in this RDA?
b. The RDA of riboflavin for adult women contains 1.8×10^{18} molecules of riboflavin. What is the RDA for adult women, in milligrams?
65. What is the mass, in grams, of a single atom of platinum?
66. Rubbing alcohol often contains propanol, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}(\ell)$. Suppose that you have an 85.9 g sample of propanol
a. How many carbon atoms are in the sample?
b. How many hydrogen atoms are in the sample?
c. How many oxygen atoms are in the sample?
67. a. How many formula units are in a 3.14 g sample of aluminum sulfide, $\mathrm{Al}_{2} \mathrm{~S}_{3}(\mathrm{~s})$?
b. How many ions (aluminum and sulfide), in total, are in this sample?
68. Which of the following two substances contains the greater mass?

- 6.91×10^{22} molecules of nitrogen dioxide, $\mathrm{NO}_{2}(\mathrm{~g})$
- 6.91×10^{22} formula units of gallium arsenide, GaAs(s)

69. Many common dry-chemical fire extinguishers contain ammonium phosphate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(\mathrm{~s})$, as their principal ingredient. If a sample of ammonium phosphate contains 4.5×10^{21} atoms of nitrogen, what is the mass of the sample?
70. Place the following three substances in order, from greatest to smallest number of hydrogen atoms:

- 268 mg of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (s)
- 15.2 g of hydrogen cyanide, $\operatorname{HCN}(\boldsymbol{\ell})$
- 0.0889 mol of acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}(\ell)$

