Solutions \& Limiting Reagents

When performing stoichiometry using concentrations \& limiting reagents, follow these steps:

1. Write a balanced chemical equation. Include state signs
2. Convert the given values to moles for both reactants
3. Use the mole ratio to determine which reactant is limiting
1) Find the mass of aluminum hydroxide that precipitates when 20.0 mL of $0.0150 \mathrm{~mol} / \mathrm{L}$ aqueous aluminum sulfate is mixed with 30.0 mL of $0.0185 \mathrm{~mol} / \mathrm{L}$ aqueous calcium hydroxide.

Balance Equation		+		\rightarrow	
Civen					
Moles we HAVE					
Moles we NEED					

Solutions \& Limiting Reagents

4. Use the limiting reagent number of moles and convert to the required values of moles using the mole ratio from the balanced equation
5. Convert the required amount in moles to the required value (using the appropriate conversion factor)
2) Calculate the mass of lead(II) sulfide that will precipitate when 6.75 g of sodium sulfide is added to 250 mL of $0.200 \mathrm{~mol} / \mathrm{L}$ lead(II) nitrate.

Balance Equation		+		\rightarrow	
Given					
Moles we HAVE					
Moles we NEED					

