Scientists often make a "stock" solution (a concentrated solution) from which they can dilute to make other solutions.
Since they are only adding water, the number of moles doesn't change and so we can say:

Where:
ie) You want to make a 500 mL solution of $1.0 \mathrm{~mol} / \mathrm{L} \mathrm{NaCl}$. You have a stock solution of $5.0 \mathrm{~mol} / \mathrm{L}$. How can you make it?

Ex. 1: What volume of a $1.60 \mathrm{~mol} / \mathrm{L}$ stock solution of calcium chloride, $\mathrm{CaCl}_{2}(\mathrm{aq})$, would you use to make 0.500 L of a $0.300 \mathrm{~mol} / \mathrm{L}$ solution?

Ex. 2: Water is added to 100 mL of $0.15 \mathrm{~mol} / \mathrm{L}$ sodium nitrate, NaNO_{3} (aq), to make 700 mL of diluted solution. Calculate the molar concentration of the diluted solution.

Ex. 3: What volume of $1.25 \mathrm{~mol} / \mathrm{L}$ potassium iodide solution can you make with 125 mL of $3.00 \mathrm{~mol} / \mathrm{L}$ potassium iodide solution?

Try it: p. 386 \#52,58,59

