So far...

- Boyle's Law
- Charles's Law
- Gay-Lusaac's Law
- Next up:
- Combined gas law
- Avogadro’s Law

Combined Gas Law

- If we put together Boyle's, Charles's and Gay-Lusaac's law, we get: $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$

Don't forget, temperature must be in KELVIN!

Try it!

Problem

A small balloon contains 275 mL of helium gas at a temperature of $25.0^{\circ} \mathrm{C}$ and a pressure of 350 kPa . What volume would this gas occupy at $10.0^{\circ} \mathrm{C}$ and 101 kPa ?

Given:

$P_{1}=350 \mathrm{kPa} \quad T_{2}=10.0^{\circ} \mathrm{C}$
$V_{1}=275 \mathrm{~mL} \quad P_{2}=101 \mathrm{kPa}$
Convert temperatures from the Celsius scale to the Kelvin scale.
$T_{1}=25.0^{\circ} \mathrm{C}$

$$
\begin{gathered}
\frac{P_{1} V_{1}}{T_{1}}\left(\frac{T_{2}}{P_{2}}\right)=\frac{P_{2} V_{2}}{T_{2}^{\prime}}\left(\frac{T_{2}^{\prime}}{P_{2}^{\prime}}\right) \\
V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}
\end{gathered}
$$

$=910 \mathrm{~mL}$

Try it!

3. A sample of gas has a volume of 525 mL at 300.0 K and 746 mmHg . What is the volume of the gas if the temperature increases to 350.0 K and the pressure increases to 780 mmHg ?

How many litres of

$\mathrm{CO}_{2} \& \mathrm{H}_{2} \mathrm{O}$?

Combining Volumes

- We can use this law (and balanced equations) to predict amounts of gas needed or produced in a reaction
- $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
- This reaction is at constant T, P
- How much oxygen is needed to react with 10 L of CH_{4} ?
- 20 L

Try it!

- What volume of CO_{2} is produced from complete combustion of 1000 L of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethanol)?
- $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
- 2000 L

Avogadro's Law

- Yes, that same Avogadro!
- Avogadro's law states that gases with the same volume (at the same temperature and pressure) should have the same number of particles

Avogadro's law: $\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}$

HCl

Figure 4.7.8 Equal volumes of gases at the same temperature and pressure contain equal numbers of molecules.

Molar Volume

Table 12.2 Experimentally Determined Molar Volumes of Gases at STP

Gas	Molar Volume (L/mol)
helium	22.398
neon	22.401
argon	22.410
hydrogen	22.430
nitrogen	22.413
oxygen	22.414
carbon dioxide	22.414
ammonia	22.350

- At STP, I mol of any gas will have a volume of 22.4 L !

Try it!

At STP, 1 mol of oxygen gas has a volume of 22.4 L . Determine the mass in a 44.8 L sample of the gas.

$$
\begin{aligned}
& V_{1}=22.4 \mathrm{~L} \\
& n_{1}=1 \mathrm{~mol} \\
& V_{2}=44.8 \mathrm{~L}
\end{aligned}
$$

$$
\frac{n_{1}}{V_{1}}=\frac{n_{2}}{V_{2}}
$$

$$
n_{2}=\frac{n_{1} V_{2}}{V_{1}}=\frac{1.00 \mathrm{~mol} \times 44.8 .,}{22.4 Z}=2.00 \mathrm{~mol}
$$

$$
\begin{aligned}
m & =n \times M \\
& =2.00 \mathrm{~m} 61 \times 32.00 \mathrm{~g} / \mathrm{mol}=64.0 \mathrm{~g}
\end{aligned}
$$

Try it!

Magnesium burns brightly in air to form magnesium oxide. It is determined that 0.590 g of magnesium burns in oxygen at $19^{\circ} \mathrm{C}$ and 102.5 kPa pressure.
What volume of oxygen is required?

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s})
$$

- Find moles of $M g$ using $n=m / M$
- $\mathrm{n}=0.590 \mathrm{~g} / 24.3 \mathrm{I} \mathrm{g} / \mathrm{mol}$
$\mathrm{n}=0.02427 \mathrm{~mol}$
- Find moles of O_{2} using equation:
0.01214 mol of O_{2}
- Convert moles of O_{2} into volume
- $\mathrm{V}=\mathrm{nRT} / \mathrm{P}=0.283 \mathrm{dm}^{3}$

Phosphorus burns in chlorine according to the equation:

$$
\mathrm{P}_{4}(\mathrm{~s})+6 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{PCl}_{3}(\mathrm{l})
$$

What mass of PCl_{3} is produced when excess phosphorus is burnt in $355 \mathrm{~cm}^{3}$ of chlorine at STP?

- Find moles of Cl 2 using molar volume: $\underline{\mathrm{Imol}}=\underline{22.4 \mathrm{dm}^{3}}$
$x \quad 0.355 \quad \mathrm{x}=0.01585$
- Use the mole ratio to find moles of PCl_{3}.
- 6 moles $\mathrm{Cl}_{2}=4$ moles PCl_{3}
- $0.01585 x \quad x=0.010 \mathrm{~mol}$ of PCl 3
- Convert back to mass: $\mathrm{m}=\mathrm{nM}=0.010 \times 137.32=1.45 \mathrm{~g}$

Try it!

- p. 542 \#I,2,5
- p. 549 \#II, I2, I4

How does knowledge of the gas laws help us treat disease?

The Ideal Gas Law

- So far, we have looked at 3 equations:

Boyle's law: $\quad V \propto \frac{1}{P}$ at constant n and T
Charles' law: $\quad V \propto T$ at constant n and P
Avogadro's law: $V \propto n$ at constant P and T

- If we combine them together: $\quad V \propto \frac{n T}{P}$
- Tossing in a constant, R, we get: R as $8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-}$
- PV = nRT
P in kPa
V in dm^{3}
T in K
n in mol

Try it!

What volume will 52.0 g of carbon dioxide gas occupy at a temperature of $24^{\circ} \mathrm{C}$ and 206 kPa ?

$$
\begin{array}{ll}
P=206 \mathrm{kPa} & V=? \\
T=24+273=297 \mathrm{~K} & m=52.0 \mathrm{~g}
\end{array}
$$

$$
R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Ideal gas equation: $P V=n R T$

$$
\begin{aligned}
& n=\frac{m}{M} \therefore P V=\frac{m}{M} R T \\
& \begin{aligned}
\therefore V & =\frac{m R T}{P M} \\
& =\frac{52.0 \times 8.31 \times 297}{206 \times 44.0} \\
& =14.2 \mathrm{dm}^{3}
\end{aligned}
\end{aligned}
$$

BOYLE'S LAW
As pressure increases, volume decreases,

$$
P_{1} V_{1}=P_{2} V_{2}
$$

AVOGADRO'S LAW
As the number of particles increases,

$$
P_{\text {TOTAL }}=P_{1}+P_{2}+P_{3} \ldots
$$

$$
\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}
$$

Summary

TABLE 4.7.2 GAS RELATIONSHIPS

$\left.\begin{array}{|l|l|l|}\hline \text { Relationship } & \text { Formula } & \text { Units } \\ \hline \text { Ideal gas equation } & P V=n R T & \begin{array}{l}P \text { in } \mathrm{kPa} \\ V \text { in } \mathrm{dm}^{3}\end{array} \\ T \text { in } \mathrm{K}\end{array}\right]$

