So far...

- Boyle's Law
- Charles's Law
- Gay-Lusaac's Law
- Next up:
 - Combined gas law
 - Avogadro's Law

• If we put together Boyle's, Charles's and Gay-Lusaac's law, we get: $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

Don't forget, temperature must be in KELVIN!

Problem

A small balloon contains 275 mL of helium gas at a temperature of 25.0°C and a pressure of 350 kPa. What volume would this gas occupy at 10.0°C and 101 kPa?

Given:

$$\begin{array}{ll} P_1 = 350 \ \mathrm{kPa} & T_2 = 10.0^{\circ}\mathrm{C} \\ V_1 = 275 \ \mathrm{mL} & P_2 = 101 \ \mathrm{kPa} \\ T_1 = 25.0^{\circ}\mathrm{C} & \end{array}$$

Convert temperatures from the Celsius scale to the Kelvin scale.

$$\frac{P_1 V_1}{T_1} \left(\frac{T_2}{P_2} \right) = \frac{P_2 V_2}{P_2} \left(\frac{T_2}{P_2} \right)$$

$$V_2 = \frac{P_1 V_1 T_2}{T_1 P_2} = 910 \text{ mL}$$

3. A sample of gas has a volume of 525 mL at 300.0 K and 746 mmHg. What is the volume of the gas if the temperature increases to 350.0 K and the pressure increases to 780 mmHg?

How many litres of CO₂ & H₂O?

Combining Volumes We can use this law (and balanced equations) to

- predict amounts of gas needed or produced in a reaction
- $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$
- This reaction is at constant T, P
- How much oxygen is needed to react with 10 L of CH₄?
- 20 L

- What volume of CO₂ is produced from complete combustion of 1000 L of C₂H₅OH (ethanol)?
- $C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O$
- 2000 L

Avogadro's Law Yes, that same Avogadro!

- Avogadro's law states that gases with the same volume (at the same temperature and pressure) should have the same number of particles

Wednesday, May 22, 2013

Molar Volume

Table 12.2 Experimentally Determined Molar Volumes of Gases at STP

Gas	Molar Volume (L/mol)
helium	22.398
neon	22.401
argon	22.410
hydrogen	22.430
nitrogen	22.413
oxygen	22.414
carbon dioxide	22.414
ammonia	22.350

• At STP, I mol of any gas will have a volume of 22.4 L!

At STP, 1 mol of oxygen gas has a volume of 22.4 L. Determine the mass in a 44.8 L sample of the gas.

$$V_1 = 22.4 \text{ L}$$

 $n_1 = 1 \text{ mol}$
 $V_2 = 44.8 \text{ L}$
 $n_1 V_2 = 1.00 \text{ mol} \times 44.8 \text{ V}$

 $n_2 = \frac{n_1 v_2}{V_1} = \frac{1.00 \text{ mor x} 44.8 \text{ L}}{22.4 \text{ L}} = 2.00 \text{ mol}$

 $m = n \times M$ = 2.00 m/ol × 32.00 g/m/ol = 64.0 g

Magnesium burns brightly in air to form magnesium oxide. It is determined that 0.590 g of magnesium burns in oxygen at 19°C and 102.5 kPa pressure. What volume of oxygen is required? $\frac{2Mg(s) + O_2(g) \rightarrow 2MgO(s)}{2MgO(s)}$

- Find moles of Mg using n = m/M
- n = 0.590 g/24.31 g/mol
 - Find moles of O₂ using equation:

- n = 0.02427 mol
- $0.01214 \text{ mol of } O_2$
- Convert moles of O₂ into volume
- $V = nRT/P = 0.283 dm^3$

Phosphorus burns in chlorine according to the equation:

 $P_4(s) + 6Cl_2(g) \rightarrow 4PCl_3(l)$

What mass of PCl₃ is produced when excess phosphorus is burnt in 355 cm³ of chlorine at STP?

- Find moles of Cl2 using molar volume: I mol = 22.4 dm^3
 - x 0.355 x=0.01585
- Use the mole ratio to find moles of PCI₃.
- 6 moles $Cl_2 = 4$ moles PCl_3
- 0.01585 x x = 0.010 mol of PCl3
- Convert back to mass: m = nM = 0.010 x 137.32 = 1.45 g

• p. 542 #1,2,5

• p. 549 #11,12,14

How does knowledge of the gas laws help us treat disease?

Understanding Hyperbaric Oxygen Therapy

Select a Question from the following list

What is Hyperbaric Oxygen Therapy?

How does it work?

Is it beneficial?

How much time will it take?

Where is it performe ??

Can I see the chamber?

Will I have any problems inside the chamber?

Menu

The Ideal Gas Law

• So far, we have looked at 3 equations: Boyle's law: $V \propto \frac{1}{P}$ at constant *n* and *T* Charles' law: $V \propto T$ at constant *n* and *P*

Avogadro's law: $V \propto n$ at constant P and T

• If we combine them together: $V \propto \frac{nT}{P}$

 $V \text{ in } \text{dm}^3$

Tossing in a constant, R, we get: *R* as 8.31 J K⁻¹ mol⁻¹ **PV = nRT**

 $T ext{ in } K$

n in mol

P in kPa

What volume will 52.0 g of carbon dioxide gas occupy at a temperature of 24°C and 206 kPa?

Try it!

 $P = 206 \text{ kPa} \qquad V = ?$ $T = 24 + 273 = 297 \text{ K} \qquad m = 52.0 \text{ g}$ $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ Ideal gas equation: PV = nRT $n = \frac{m}{M} \therefore PV = \frac{m}{M}RT$ $\therefore V = \frac{mRT}{PM}$ $= \frac{52.0 \times 8.31 \times 297}{206 \times 44.0}$ $= 14.2 \text{ dm}^3$

Summary

TABLE 4.7.2 GAS RELATIONSHIPS

Relationship	Formula	Units
Ideal gas equation	PV = nRT	Pin kPa Vin dm ³ Tin K
For a fixed amount of gas at constant temperature (Boyle's law)	$PV = k$ or $P_1V_1 = P_2V_2$	P ₁ and P ₂ in the same units V ₁ and V ₂ in the same units k is a constant
For a fixed amount of gas at constant pressure (Charles' law)	$\frac{V}{T} = k or \frac{V_1}{T_1} = \frac{V_2}{T_2}$	<i>T</i> in K V ₁ and V ₂ in the same units <i>k</i> is a constant
For a fixed amount of gas (General gas equation)	$\frac{PV}{T} = k or \frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$	P ₁ and P ₂ in the same units V ₁ and V ₂ in the same units T in K k is a constant
For a gas at constant pressure and temperature (Avogadro's law)	$\frac{V}{n} = k or \frac{V_1}{n_1} = \frac{V_2}{n_2}$	<i>n</i> in mol V ₁ and V ₂ in the same units <i>k</i> is a constant
For an amount of gas under conditions of standard temperature and pressure (STP)	$n = \frac{V}{V_{\rm m}}$	<i>V</i> in dm ³ V _m in dm ³ <i>n</i> in mol