THE HUMAN NERVOUS SYSTEM

Central nervous system

Brain

Spinal cord

Peripheral nervous system

Peripheral nerve
THE HUMAN NERVOUS

• **NERVOUS SYSTEM** = the control system that enables animals to detect a stimulus and coordinate response.

A change in the environment (internal OR external) that is detected by your body is called the **STIMULUS**.

Your body’s reaction to the change is called a **RESPONSE**.
THE HUMAN NERVOUS SYSTEM

Smell of pizza…

…leads to the secretion of saliva!

Accidentally touching a hot iron…

…you instantly feel pain and quickly pull your hand away!
THE HUMAN NERVOUS SYSTEM

The nervous system has **2 main divisions**: the CENTRAL NERVOUS SYSTEM (CNS) and the PERIPHERAL NERVOUS SYSTEM (PNS). The PNS is further divided into the somatic and autonomic systems.
THE HUMAN NERVOUS SYSTEM

• Two different types of cells are found in the nervous system:

 » **GLIAL CELLS** – non-conducting cells important for the structural support and metabolism of the nerve cells.

 » **NEURONS** – are the functional unit of the nervous system. These are cells that conduct nerve impulses.
NEURONS

- A **nerve cell** is called a **NEURON**!

NEURON = a specialized cell that uses **electrical signals** to communicate with other cells.

The electrical signal is called an **IMPULSE**.

The **IMPULSE** moves **DOWN** the neuron at a very fast rate – to allow for quick responses.
NEURONS

• All neurons have the same basic structure.

Each cell has a large **CELL BODY** and many short **DENDRITES** that carry signals from outside the neuron toward the cell body.

A single, long **AXON** carries impulses **AWAY** from the cell body toward other cells.
NEURONS

The **AXON** carries impulses **AWAY** from the cell body toward other neurons or effectors.

Axons are covered in a fatty, white **MYELIN SHEATH** which acts as insulation for the neurons (by preventing the loss of charged ions from the nerve cell. This sheath is formed by special glial cells called **SCHWAN CELLS**.

The areas between the myelin sheath are known as **NODES OF RANVIER**.
NEURONS

Nerve impulses travel down the axon by jumping from one node to another.

TERMINAL KNOBS at the end of the axon attach the neuron to other neurons OR to other cells.

http://www.youtube.com/watch?v=ob5U8zPbAX4
The connection between the terminal knob of a neuron's axon and a dendrite of another neuron is called a **SYNAPSE**.

A bundle of neurons is called a **NERVE**.
TYPES OF NEURONS

• Animals with a brain have 3 types of neurons:
 » SENSORY NEURONS
 » MOTOR NEURONS
 » INTERNEURONS
TYPES OF NEURONS

SENSORY NEURONS = carry impulses from the EYE (sight), EAR (hearing), TONGUE (taste), and SKIN (pressure and heat) to the brain!

MOTOR NEURONS = carry impulses from the brain to muscles (for movement) or a gland (hormone secretion).
TYPES OF NEURONS

INTERNEURONS = are neurons in the brain and spinal cord that connect sensory and motor neurons.
REFLEX ARCS

Smell of pizza…

…leads to the secretion of saliva!

1. When you smell the smell of pizza, receptors in the NOSE send an impulse through SENSORY NEURONS to the brain.

2. The sensory neurons synapse with INTERNEURONS in the brain, which connect with motor neurons.

3. The MOTOR NEURON sends an impulse to the salivary glands causing them to secrete saliva!

What is happening in the brain????

Monday, July 18, 2011
REFLEX ARCS

A **REFLEX ARC** produces very fast responses to stimuli. Reflex actions are predictable, automatic, and unlearned (innate).

1. The doctor's hammer hits the knee just below the knee cap.

2. This message travels along a sensory neuron to the brain.

3. The sensory neuron synapses in the brain with an interneuron that passes the impulse to a motor neuron.

4. A response impulse travels down a motor neuron and synapses with your leg muscle.

5. Your leg muscle causes your leg to kick a little.
ELECTROCHEMICAL IMPULSE

- nerve impulses are ELECTROCHEMICAL MESSAGES created by the movement of ions through the nerve cell membrane.

- When there is a nerve impulse, a rapid change in the electro-potential difference across the membrane is detected.
Resting Potential Stage

- membrane is polarized
- Inside of the membrane of the neuron is negatively charged compared to the outside
- Outside the cell, there is a higher [Na+] and lower [K+] outside the cell than inside

[Diagram showing positive and negative charges on the membrane]
the membrane is 50 times more permeable to K$^+$ than to Na$^+$ so that while Na$^+$ is moving into the cell, there is more K$^+$ diffusing out of the cell leaving the interior of the cell more negative than the exterior.

- Difference in concentration of ions across the membranes is maintained by the sodium-potassium pump.
- The resting potential is measured to be -70 mV with respect to the extracellular fluid surrounding the axon.
Resting Potential Stage

- Plasma membrane
- Microelectrode outside cell
- Microelectrode inside cell
- Voltmeter
- Neuron
- Axon

[-70 mV]
Action Potential

- “wave” of depolarization
- nerve is **stimulated**
- Stimulus causes **\(Na^+\) channels** to open
- \(Na^+\) ions diffuse **into** cell
- Interior becomes **depolarized** (i.e. becomes less negative)
- Membrane potential changes from **−70 mV to +40 mV**
Action Potential

- change in charge opens next Na⁺ gates down the line
- This wave of depolarization is called the action potential
- Initially the Na⁺ ions increase their own permeability through the axon membrane, a case of positive feedback, then as their concentration increases, the permeability of the membrane decreases, because of negative feedback.
Resting membrane is more permeable to K+ than to Na+. K+ diffuses out faster than Na+ diffuses in. The outside of the nerve cell becomes positive in relation to the interior.

A wave of depolarization causes sodium gates to open and there is an influx of Na+ ions into the cell. The membrane becomes depolarized.

Following depolarization, sodium gates close, while potassium gates are once again opened. K+ moves out of the cell by diffusion. Once again, the cell exterior becomes negative in relation to its interior.

The sodium potassium pump restores and maintains polarization by pumping potassium ions in and sodium ions out of the cell.
3. Repolarization

- depolarization causes the sodium gates to **close**, while the potassium gates are **opened**

- this process, combined with the **sodium-potassium pump** *(3 Na\(^+\) out and 2 K\(^+\) in)* re-establishes the electrical potential across the membrane
1. Resting potential
2. Depolarization - Na⁺ channels open; K⁺ channels closed
3. Repolarization - reset charge gradient
4. Hyperpolarization: K⁺ channels close slowly
5. Refractory Period
The action potential, or wave of depolarization, moves down the nerve membrane.

The wave of depolarization is followed by a wave of repolarization, which is returning the membrane to its resting potential.
Refractory Period

- **Refractory Period** – recovery time required before a neuron can produce another action potential (setting up the dominoes)

The refractory period usually lasts 1 to 10ms.

The resting membrane potential must be restored before the next action potential can be conducted.
All-or-None Response

- there is a **minimum level** of stimulus required to cause a depolarization (**threshold level**)
- The **all-or-none response** is the fact that a nerve or muscle fibre responds completely or not at all to a stimulus.

Threshold levels are different for each neuron!!!!!
The connection between the terminal knob of a neuron's axon and a dendrite of another neuron is called a **SYNAPSE**.

A single neuron may branch many times and join with many different neurons!
SYNAPTIC TRANSMISSION

Vesicles containing chemicals called NEUROTRANSMITTERS are located in the end plate of axons.

Neurotransmitters are released into the synaptic cleft once the nerve impulse reaches the end plate.

Neurotransmitters are released by the presynaptic neuron and diffuse across the synaptic cleft, creating a depolarization of the dendrites of the postsynaptic neuron.
SYNAPTIC TRANSMISSION

- ACETYLCHOLINE is a neurotransmitter released from vesicles in the end plate of neurons.

 » ACH causes the opening of sodium channels in the postsynaptic membrane – leading to a wave of depolarization
SYNAPTIC TRANSMISSION

• Since the neurotransmitter ACH causes depolarization of the postsynaptic membrane, the neuron will stay in a constant state of depolarization as long as ACH is present.

 » The postsynaptic membrane will release an enzyme called CHOLINESTERASE which destroys ACH and allows the postsynaptic membrane to return to its resting action potential
NERVOUS CONTROL OF HOMEOSTASIS

- The human nervous system is divided into TWO parts
 1. CENTRAL NERVOUS SYSTEM (CNS)
 2. PERIPHERAL NERVOUS SYSTEM

** ALL components of the nervous system are coordinated by the CENTRAL nervous system **
Central Nervous System

Parts: brain and spinal cord

Functions:
1. Body’s control system
2. Receives sensory input
3. Relays motor impulses
4. Centre for higher functions (memory, intelligence, emotion)
The Brain

- Is protected by a three-layer membrane called the **meninges**
- **Cerebrospinal fluid** further protects by acting as a shock absorber, transporting nutrients, such as oxygen, glucose, hormones and WBCs
- Doctors can take a spinal tap and identify infections such as meningitis
The Brain

- Composed of:
 - grey matter - axon terminals, dendrites and cell bodies
 - white matter - myelinated neurons
NERVOUS CONTROL OF HOMEOSTASIS

• The **PERIPHERAL NERVOUS SYSTEM** is all the nerves except those in the brain and spinal cord that relay information between the central nervous system and other parts of the body.

• The **PNS** is further divided into two separate parts:
 1. SOMATIC NERVOUS SYSTEM
 2. AUTONOMIC NERVOUS SYSTEM
PERIPHERAL NERVOUS SYSTEM

SOMATIC NERVOUS SYSTEM

Includes **MOTOR NEURONS** that are under *conscious control* and ALL of the **SENSORY NEURONS** in your body.

A sensory neuron senses that your nose is itchy...

Your brain consciously decides to scratch the itch and sends a message to motor neurons to do so...

AUTONOMIC NERVOUS SYSTEM

Includes only the **MOTOR NEURONS** that function *without conscious control*.

We don’t consciously think about making our heart beat...

We don’t consciously think about breathing...
PERIPHERAL NERVOUS SYSTEM

• The AUTONOMIC NERVOUS SYSTEM controls motor neurons that function without conscious control. This system is made up of two different types of nerves…

 » SYMPATHTIC NERVES – nerves that prepare the body for danger

 » PARASYMPATHTIC NERVES – nerves that return the body to a normal state after a stressful situation
PERIPHERAL NERVOUS SYSTEM

SYMPATHETIC NERVES
- Prepares the body for danger!
 - Increase size of pupils
 - Speed up heart rate
 - Slow digestion
 - Relax bladder muscles

PARASYMPATHETIC NERVES
- Returns the body to a normal state after a stressful situation!
 - Makes pupils of the eye smaller
 - Slows down the heart rate
 - Increases rate of digestion
 - Contract bladder muscles

Monday, July 18, 2011
Autonomic Nervous System

<table>
<thead>
<tr>
<th>Effects on</th>
<th>Sympathetic</th>
<th>Parasympathetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>heart</td>
<td>Increased heart rate</td>
<td>Decreased heart rate</td>
</tr>
<tr>
<td>muscles</td>
<td>Increased contractions</td>
<td>Decreased contractions</td>
</tr>
<tr>
<td>bladder</td>
<td>Sphinctors relaxed</td>
<td>Sphinctors contract</td>
</tr>
</tbody>
</table>
Autonomic Nervous System

<table>
<thead>
<tr>
<th>Effects</th>
<th>Sympathetic</th>
<th>Parasympathetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>digestion</td>
<td>Decrease in peristalsis and stomach contractions</td>
<td>Increase in peristalsis and stomach contractions</td>
</tr>
<tr>
<td>eyes</td>
<td>Pupils dilate</td>
<td>Pupils constrict (normal)</td>
</tr>
<tr>
<td>liver</td>
<td>Increases glucose release</td>
<td>Stores glucose</td>
</tr>
</tbody>
</table>
Autonomic Nervous System

<table>
<thead>
<tr>
<th>Effects</th>
<th>Sympathetic</th>
<th>Parasympathetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal glands</td>
<td>Increases release of adrenaline</td>
<td>Decreases release of adrenaline</td>
</tr>
<tr>
<td>skin</td>
<td>Increases blood flow</td>
<td>Decreases blood flow</td>
</tr>
</tbody>
</table>